
UNIVERSITY OF CALIFORNIA
Santa Barbara

The Image Processing Workbench

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Geography

by

James Edward Frew, Jr.

Committee in charge:

Professor Jeff Dozier, Chairman

Professor David Simonett

Professor Raymond C. Smith

Professor Richard Kemmerer

Professor Frank Davis
July 1990

31 July 1990

Copyright by
James Edward Frew, Jr.

1990

- ii -

ACKNOWLEDGEMENTS
My foremost debt is to Jeff Dozier, my committee chairman, advisor, colleague,

and friend, without whose encouragement I would never have entered graduate school,
much less (finally!) finished a Ph.D. I am also indebted to Dave Simonett for building a
world-class geography department and acting as intellectual godfather to a generation
of graduate students, and in particular for bailing me out of almost every hole, both
intellectual and bureaucratic, that I dug myself into. Ray Smith has been a role model
both as a scientist and as an administrator; his direction of the Computer Systems
Laboratory has made it a model environment for both employees and researchers (or
those who happen to be both.) Dick Kemmerer and Frank Davis have provided valu-
able insights and criticisms from their perspectives of computer science and terrestrial
ecology.

Outside of my committee, I have benefited considerably from the advice and ideas
of John Bruno, Paul Eggert, John Melack, and Alan Strahler.

IPW could never have evolved as it has without incorporating the experience of
several users and programmers. Bob Crippen, Danny Marks, and Zhengming Wan all
wrote substantial software for IPW’s predecessor QDIPS (the Quick and Dirty Image
Processing System), while Mike Frampton and Barbara Marks used QDIPS to complete
their master’s theses; QDIPS could not have evolved into IPW without their suggestions
and encouragement.

The current version of IPW owes a great deal to the programming efforts and
overall insight of Ralph Dubayah, Jud Harward, Shusun Li, Judy Paddon, and Jian-
cheng Shi, and to the suggestions of IPW users Jerome Collin, Bert Davis, Kelly Elder,
Earl Hajic, Anne Nolin, and Curtis Woodcock. Judy Paddon deserves a special mention
for her efforts in turning an early version of IPW into a useful instructional tool (not to
mention sharing the Incredible Shrinking Office with me). Curtis Woodcock of Boston
University deserves everything he’s gotten for fearlessly promoting IPW as his
department’s principal image processing system.

A small army of administrative and support personnel kept things running
smoothly when my research spilled over into time I should have been spending on other
things. In the Geography Department, Teresa Everett has been looking out for me ever
since she got here; I certainly owe her more than the $10 bet she won. In the College of
Engineering, I must thank Paul Hyder, Alex Kreis, Tom Marazita, Dave Probert, Stu
Swartz, Alan Stebbens, and especially Teddi Potter for helping make my life much
easier than it had any right to be. Here in the Computer Systems Laboratory, special
thanks go to Cindy Fulce, Charleen Johnson, Kae Lecce, and especially Sarah Bretz,
who compiled the bibliography and has assisted with almost everything. I would also
like to thank Karen Baker, Dave Menzies, and Kirk Waters for putting up with all the
flakey computers I was neglecting.

Finally, I must acknowledge the encouragement and support of my colleagues Jon
Forrest, Rick Kattelmann, Ralph Milliff, Mark Williams, Shiren Yang, Mike Zika, and
especially Kelly Elder, all of whom have from time to time kept the load from getting
too heavy, or too light.

Over the years, this work has received funding from the National Aeronautics and
Space Administration, the National Oceanic and Atmospheric Administration, the Cali-
fornia Space Institute, the Hughes Santa Barbara Research Center, and the Regents of
the University of California. The generous support of these institutions is gratefully
acknowledged.

- iii -

This work is dedicated to my parents, James Frew and Rose Marie Frew, who
helped me start it, and to my wife, Shannon, who helped me finish it.

- iv -

VITA
04 November 1954 — born, Long Beach, CA.
1977 — B.A., Geography, University of California, Santa Barbara.
1980 — M.A., Geography, UCSB.
1979 - 1981 — Lecturer, Geography and Computer Science, UCSB.
1981 - 1988 — Programmer, Computer Systems Laboratory, UCSB.
1988 - present — Manager, Computer Systems Laboratory, UCSB.

PUBLICATIONS

Dozier, J., and J. Frew, ‘‘Atmospheric corrections to satellite radiometric data over
rugged terrain,’’ Remote Sensing of Environment, vol. 11, pp. 191-205, 1981.

Marks, D., J. Dozier, and J. Frew, ‘‘Automated basin delineation from digital elevation
data,’’ Geo-Processing, vol. 2, pp. 299-311, 1984.

Frew, J., and J. Dozier, ‘‘The QDIPS image processing system,’’ CSL Technical Report,
Computer Systems Laboratory, University of California, Santa Barbara, CA, 1984.

Frew, J., ‘‘Registering Thematic Mapper Imagery to Digital Elevation Models,’’ Proceed-
ings of the Tenth International Symposium on Machine Processing of Remotely
Sensed Data, June 12-14, 1984, Purdue University, West Lafayette, IN, pp. 432-
435.

Frew, J., and J. Dozier, ‘‘The Image Processing Workbench - Portable Software for
Remote Sensing Instruction and Research,’’ Proceedings of IGARSS ’86 Sympo-
sium, Z..urich, 8-11 Sept. 1986, ESA SP-254, pp. 271-276.

Dozier, J., and Frew, J., ‘‘Rapid Calculation of Terrain Parameters for Radiation Model-
ing from Digital Elevation Data,’’ Proceedings of IGARSS ’89 Symposium, Van-
couver, Canada, 10-14 July 1989, pp. 1769-1774.

- v -

ABSTRACT

The Image Processing Workbench
by

James Edward Frew, Jr.

This dissertation presents the design and implementation of the Image Processing
Workbench (IPW), a UNIX-based image processing software system. IPW is a develop-
ment environment for algorithms and applications using image data from primarily
remote sensing sources.

IPW is simple, extensible, and portable. A well-defined set of basic image process-
ing operations are provided which may be combined to form complex processing
sequences. The underlying capabilities of UNIX (sequential interprocess communica-
tion, programmable command language, regular command syntax) are exploited rather
than duplicated. No particular display hardware is required; instead, several display
types are supported as ‘‘sinks’’ for processing pipelines.

IPW has a single, portable image data format that accommodates both integer and
floating-point data representations, and an unlimited amount of ancillary information.
Images may have an arbitrary number of channels or bands. Point, vector, and polygon
data in textual form may be easily inserted into or extracted from image data.

Function libraries and program generation tools are provided for programmers
wishing to extend IPW. An emphasis on portability has allowed the migration of IPW
source code and image data across a variety of heterogeneous computing environments.

This dissertation examines IPW from the successive points of view of a user, a
programmer, and a system maintainer. Complete documentation for all IPW programs
and library functions is included, as is an appendix containing the IPW C programming
standards.

- vi -

Table of Contents
1 Introduction ...1
1.1 Need for something like IPW..1
1.2 Overview of dissertation ..2

2 Design goals ...4
2.1 Simplicity ..4
2.1.1 Comprehensible ..4
2.1.2 Maintainable...4
2.2 Extensibility ..5
2.2.1 No arbitrary limits of magnitude ..5
2.2.2 Design for growth ...5
2.2.3 New data sources ..5
2.3 Portability ...5
2.3.1 Code portability ..5
2.3.2 Data portability ..6
2.3.3 Investigator portability...6
2.4 Uniqueness ..6
2.4.1 Avoid reinventing the wheel ...6
2.4.2 Software tools philosophy ...6
2.4.3 Data import and export...7
2.5 UNIX..7
2.5.1 Pipes and filters..7
2.5.2 Sequential processing ...7
2.5.3 Shell ...7
2.5.4 Other UNIX commands (awk, sed, etc.) ...7
2.5.5 File system ...8
2.5.6 Command syntax ..8
2.5.7 C...8
2.6 An Open System ..8
2.7 Commentary ..8

3 Brief functional specification ..10
3.1 Images ...10
3.1.1 Headers ..11
3.1.2 Pixels ..12
3.1.3 Quantization ...12
3.2 User environment ..13
3.2.1 Data files ..13
3.2.2 Primitives ...14
3.2.3 Scripts ..14
3.3 Programmer environment ..15
3.3.1 Libraries ...15
3.3.2 Tools ...16
3.3.3 Templates ...16
3.3.4 Access to source code ..16
3.4 Commentary ..16

4 The user level ...18
4.1 Data management..18
4.1.1 Importing image data..18
4.1.2 Optional headers...20
4.1.3 Multiband images ...21

- vii -

4.1.4 Masks ...22
4.1.5 Point and vector data ..22
4.1.6 Exporting image data..23
4.2 Generic image processing operations ...24
4.2.1 Univariate point operations ..24
4.2.1.1 Lookup tables...24
4.2.1.2 Histograms...25
4.2.2 Multivariate point operations ...26
4.2.2.1 Algebraic operations ..27
4.2.2.2 Statistics ..27
4.2.2.3 Specialized operations..28
4.2.3 Neighborhood operations ..28
4.2.3.1 Convolution..29
4.2.3.2 Gradient...29
4.2.4 Geometric operations ..30
4.2.4.1 Subscene extraction ...30
4.2.4.2 Reflection ...31
4.2.4.3 Transposition ...31
4.2.4.4 Zooming ...32
4.2.4.5 Shearing...32
4.3 Example applications...32
4.4 Commentary ..33

5 User’s manual ...35
5.1 Introduction and initialization ...35
5.2 Commands ...35

 bitcom..37
 cmpimg ..38
 cnhist...39
 convolve ...40
 demux ..42
 dither...43
 edhdr ...44
 edimg...45
 flip ...47
 gradient ...48
 grhist ...50
 hist ..51
 histeq...53
 hor1d ...55
 horizon...56
 interp...59
 ipw...60
 ipw2hds ...61
 ipw2ps ...62
 ipw2sun ...64
 ipw2xim ...65
 ipwman..66
 lincom ..68
 lqhx..70
 lutx ..72
 mkbih ..74

- viii -

 mkgeoh ..77
 mklqh ..79
 mklut ...81
 mksath...83
 mksunh..85
 mkwinh..86
 mstats..87
 mult ...89
 mux..91
 poly..92
 prhdr ...94
 primg ...95
 random ..97
 rastool..99
 rmhdr ..101
 shade ...102
 skew...104
 sunang ...106
 transpose ...109
 viewcalc ...110
 viewf ..112
 wedge...114
 window...116
 zoom ..119

6 The programmer level...121
6.1 Image structure ...121
6.1.1 Headers...121
6.1.1.1 Storage format ...121
6.1.1.2 Basic image header ..123
6.1.1.3 Optional headers ..123
6.1.2 Pixels ..124
6.1.2.1 Storage format ...124
6.1.2.2 Band interleaving...125
6.2 Program structure ...125
6.2.1 Skeleton ..125
6.2.2 Main..126
6.2.2.1 Header comments...126
6.2.2.2 Command-line arguments ..127
6.2.2.3 Parameter initialization ...130
6.2.2.4 File access ..131
6.2.3 Header processing...132
6.2.3.1 Data structures ..133
6.2.3.2 Functions ...133
6.2.4 Pixel processing ..136
6.2.4.1 uio ...136
6.2.4.2 pixio ...138
6.2.4.3 fpio ...140
6.2.5 Error handling ..142
6.2.5.1 Warnings..143
6.2.5.2 Errors ..143
6.2.5.3 Bugs ...143

- ix -

6.2.5.4 Assertion violations..144
6.2.5.5 Deferred errors ..145
6.2.6 Memory management..147
6.2.6.1 Functions ...147
6.3 Shell script support..148
6.3.1 Skeleton ..148
6.3.2 Usage, sherror ..150
6.4 Development tools..150
6.4.1 ipwmake ..151
6.4.2 ipwlint ..152
6.5 Commentary ..153

7 Programmer’s manual ...154
7.1 Programmer commands ...154

 atob..155
 btoa..156
 install ..157
 ipwlint ...159
 ipwmake ..160
 mc ..163
 objs ..164

7.2 Library functions ...165
 addsv ...166
 allocnd ...168
 bihmake ...170
 boimage..172
 dtoa..173
 ecalloc ..174
 error ..175
 fpmap...177
 fpvread...179
 frand ..181
 geohmake...182
 gethdrs...183
 hbit ..185
 hdralloc..186
 hnbytes ..187
 hnlines ...188
 horhmake...189
 imgcopy..190
 imgsize...191
 ipwenter...193
 ipwexit ...197
 lqhmake ...198
 ltof ...200
 mnxfp...202
 ndig..203
 no_history ..204
 no_tty...205
 opt_check ...206
 orhmake...207
 pow2 ..208

- x -

 pvread..209
 sathmake ...211
 skewhmake ..212
 skiphdrs...213
 sunhmake ..215
 uclose ...216
 ucopy ...217
 ueof ..218
 ugets ..219
 uread ...221
 uremove ...223
 uropen..224
 urskip ..226
 usrerr...227
 winhmake ..229
 xxhdup ...230
 xxhmake ..231
 xxhread..233
 xxhwrite...236

7.3 Shell script support routines..238
 isposint ..239
 sherror ...240
 usage..241

8 Installation and maintenance ...242
8.1 Create IPW account ..242
8.2 Load the distribution tape..243
8.2.1 Possible ownership problems...243
8.3 Directory hierarchy..243
8.4 Configuring the shell(s)..247
8.4.1 pub/cshrc ..247
8.4.2 lib/ipwenv ..248
8.5 Configuring ’’make‘‘ ...248
8.5.1 lib/make/local ...248
8.6 Configuring the C compiler ..248
8.6.1 h/config.h ...249
8.6.2 h/ansi ..249
8.6.2.1 h/ansi/float.h ..249
8.6.2.2 h/ansi/limits.h ..250
8.6.3 h/posix ..250
8.6.3.1 h/posix/limits.h ..250
8.7 src/lib/libunix ..250
8.8 Building IPW ..250
8.9 Post-installation issues ..250

9 Shortcomings ..252
9.1 Lack of a data dictionary ...252
9.2 Problems with command-line arguments..252
9.3 Shortcomings of the data model ...254
9.4 Shortcomings of the process model...254
9.5 Shortcomings of the programming model ...255

- xi -

10 Principal contributions..256
10.1 Exploitation of UNIX ..256
10.2 Portability ..256
10.3 Pipelines and primitives...256
10.4 Image data format..257
10.5 Linear quantization..257
10.6 Display not required ..257
10.7 Use of non-image data..258

11 Future directions ..259
11.1 New primitives...259
11.2 User interface ..260
11.3 Programmer interface ..260
11.4 Data representation ...260

A Coding standard ...262
A.1 Style ..262
A.1.1 Comments...263
A.1.1.1 Program header comments ..265
A.1.1.2 Function header comments ..268
A.1.1.3 Variable and header file header comments ..269
A.1.2 Names ..270
A.1.3 White space ..271
A.1.4 Indentation and braces ...272
A.1.5 The C preprocessor ...273
A.1.5.1 Macros ...274
A.1.5.2 Header files ...275
A.1.6 Declarations ...276
A.1.7 Types ..278
A.1.8 Use of ‘‘static’’...279
A.1.9 Expressions and statements ...280
A.1.10 Control structures ..282
A.1.11 Modules ..284
A.1.12 Miscellany ..286
A.2 Portability ...287
A.2.1 Legal but nonportable...288
A.2.2 Gray areas..289
A.2.3 Common blunders...290
A.2.4 Preprocessor ...291
A.2.5 Names ..291
A.2.6 Types ..291
A.2.7 Machine-dependent constants...294
A.2.8 Environment...294
A.3 Performance ..295
A.3.1 Memory ..295
A.3.2 Registers ..297
A.3.3 Control structures ..298

- xii -

- 1 -

CHAPTER 1: INTRODUCTION

Although remote sensing technology has existed for over a century
[Simonett 1983], the availability of remotely-sensed image data in digital form is a rela-
tively recent phenomenon, since which time the technologies of remote sensing and
digital image processing have been closely linked [Castleman 1979] . The two technolo-
gies are individually mature; remotely-sensed image data are commercially available
(e.g., [SPOT 1989]), as are image processing systems at all levels of integration (e.g.,
[Bracken 1983].) However, the use of digital image processing techniques for the
acquisition, restitution, and analysis of remotely-sensed data remains an active field of
research. There are several reasons for this.

First, the sheer volume of remotely-sensed image data available for processing is
staggering: A single Landsat Thematic Mapper (TM) multispectral image occupies over
200 MBytes1 in digital form [EOSAT 1985], and it is estimated that the digital data
acquired during a single year’s operation of the proposed EOS platforms will exceed 1
PByte2 [Chase 1986]. Dealing with data volumes of this magnitude presses current
hardware and software environments to (and beyond) the limits of their capabilities.

Second, many of the techniques needed to process and analyze remotely sensed
digital imagery have yet to be developed. For example, although multispectral digital
imagery has been available for almost two decades, it is only recently that data have
been available with fine enough spectral resolution to permit analysis by classical spec-
troscopic techniques (e.g., [Vane 1988].) Similarly, the increasing spatial resolution of
remotely-sensed imagery has led to new questions about scale effects in physical models
[Dubayah 1990].

Finally, all phases of digital image processing for remote sensing require both a
volume and a variety of ancillary data that are unusual in other image processing
applications. For example, the extraction of Earth surface exitance from TM image
data requires at least [Dozier 1984]:

• end-to-end characterization of the sensor system geometry, so image pixels may be
associated with earth surface locations;

• end-to-end characterization of the sensor system radiometry, so image pixels may
be converted to the actual radiance values measured at the satellite;

• coregistered surface parameters (elevation, slope, aspect, etc.);

• atmospheric optical parameters;

• solar geometry.

To be usable for remote sensing applications, an image processing system must main-
tain these kinds of ancillary data.

1.1. NEED FOR SOMETHING LIKE IPW
The Image Processing Workbench (IPW) is a digital image processing software

system, designed to address the following general applications of digital image process-
ing to remote sensing:

1 1 MByte (‘‘megabyte’’) = 220 (∼∼ 1 million) bytes
2 1 PByte (‘‘petabyte’’) = 250 (∼∼ 1 quadrillion) bytes

- 2 -

• algorithm development

• application development

• instruction

The areas addressed by this list reflect the software’s grounding in an academic
environment. First and foremost, we require a digital image processing environment
that is usable for algorithm and applications development by researchers. However, we
must not ignore the fact that many research problems involve processing image data in
quantities large enough to be indistinguishable from ‘‘operational’’ applications. The
research environment must therefore support rapid migration of applications to a pro-
duction environment.

The distinction between algorithms and applications is an important one. Algo-
rithms are usually lower-level than applications. Algorithms are often problem-
independent, while applications tend to be problem-specific. Algorithms are most often
developed by programmers, while applications are most often developed by scientists.
Support for both development styles requires a highly flexible system.

Finally, IPW must support instruction, since teaching is a primary mission of the
academic environment. It is especially important that the teaching and research sys-
tems be as similar as possible, both to minimize the effort involved in maintaining
duplicate systems, and to facilitate migration of students from classroom to real-world
research problems.

1.2. OVERVIEW OF DISSERTATION
The structure of this dissertation is as follows:

Chapter 2 enumerates the overall design principles by which IPW was developed.
Chapter 3 presents a brief functional specification of a IPW.

The next 5 chapters explore IPW at increasing levels of detail, from the successive
perspectives of a user, an application programmer, and a system administrator.

Chapter 4 describes the user-level interface to IPW, while Chapter 5 is a complete,
albeit terse, reference for all IPW features (commands, files, etc.) encountered by a
non-programming user of the system. Together, Chapters 4 and 5 may be considered a
‘‘user’s manual’’ for IPW.

Chapter 6 describes the programmer-level interface to IPW, while Chapter 7 is a
complete, albeit terse, reference for all IPW features (functions, commands, file formats,
etc.) encountered by a programmer attempting to modify or extend IPW. Together,
Chapters 6 and 7 may be considered a ‘‘programmer’s manual’’ for IPW.

Chapter 8 describes how IPW is installed on a new host system, including issues
involved in porting the software to a previously unsupported host configuration. This
chapter also discusses how to maintain an existing IPW installation. Chapter 8 may be
considered a ‘‘system administrator’s manual’’ for IPW.

The final 3 chapters place IPW in a broader perspective. Chapter 9 criticizes the
shortcomings of IPW as it is currently implemented, while Chapter 10 summarizes the
major contributions to remote sensing image processing embodied in IPW. Chapter 11
suggests some possible directions for the future development of IPW.

An appendix contains the IPW C language coding standard.

It is my intention that this dissertation should provide a definitive background
and reference for users of the IPW software, as well as a case study for those interested

- 3 -

in the overall problem of image processing software design. The contents have thus
been organized to allow an easy separation of tutorial, reference, and analytical
material.

- 4 -

CHAPTER 2: DESIGN GOALS

Six broad design goals have guided the implementation of IPW:

• simplicity: IPW should be easy to understand and use effectively.

• extensibility: IPW should be easy to adapt to applications unforeseen in its origi-
nal design.

• portability: IPW programs and data should be usable in any standard UNIX and
C environments.

• uniqueness: IPW should complement, rather than duplicate, existing capabilities
of the host environments.

• leveraging UNIX: IPW should take advantage of the particular strengths of UNIX
(pipelines, hierarchical file system, programmable command language, etc.)

• an open system: The IPW source code should be freely available.

2.1. SIMPLICITY
Complexity is probably the single most important enemy of software quality.
[Meyer 1988]

Simplicity promotes comprehensibility: simple software is easier to understand.
In turn, software that is understood is more likely to be trusted and used. Simplicity
also promotes maintainability: simple software is easier to debug and modify.

Of course, lack of complexity should not imply lack of necessary functionality.
Rather, the temptation to add functionality should always be balanced against the need
to keep the entire system comprehensible.

2.1.1. Comprehensible
IPW may be understood at many levels. The casual user may only be concerned

with the functioning of a few common commands; e.g., just enough to display an image
on a particular output device. A more serious user may need to understand how multi-
ple IPW commands may be combined at the command-script level. An application pro-
grammer will need to understand the structure of an IPW command at the source level,
and the facilities provided by the IPW function libraries. Finally, the maintainer of IPW
may ultimately need to understand the structure and function of any IPW module.

Complexity at any of these levels hinders understanding. Without simplicity as an
overall design goal, it is easy to select complex designs which offer more features or
greater efficiency. It is easy to forget that these purported gains may be useless if the
code embodying them is misused or avoided because its behavior is not fully under-
stood.

2.1.2. Maintainable
Another important consequence of simplicity is ease of maintenance. The less

complicated a piece of software is, the easier it is to track down bugs in it. This applies
at all levels — command scripts are easier to maintain if the commands they invoke
have a limited, well-defined set of options, just as C code is easier to maintain if the
algorithms employed are the most straightforward possible.

- 5 -

2.2. EXTENSIBILITY
A key design goal of the IPW implementation is extensibility. It is expected that

IPW will never be ‘‘finished’’, but will constantly be modified as new applications arise.
It is essential that the design of IPW allow for this evolutionary growth.

2.2.1. No arbitrary limits of magnitude
To the maximum extent possible, there are no limits of magnitude incorporated

into IPW. One aspect of this is avoiding static limits where dynamic limits may be used
instead, such as in the allocation of internal data structures. Another is to minimize
chances of resource exhaustion, such as not reading an entire image into memory if it
can be processed in smaller pieces.

Such limits as exist are imposed by the underlying C and UNIX environments. For
example, various image dimensions are manipulated as long or unsigned long integers.
The number of simultaneously open files in a process is limited by the operating sys-
tem. Every effort is made to ensure that limits like these are the only ones imposed by
IPW.

2.2.2. Design for growth
Like most scientific software, IPW will probably be used long beyond its originally

envisioned life span. It is therefore important that the software be designed for growth
over time, both in terms of migrating to new platforms, and adding functionality. To
this end, almost all of the underlying structures in IPW are open-ended. For example,
new types of image header data may be easily added, and are harmlessly ignored by
older programs that don’t recognize them. The pipe-filter paradigm, described below,
allows new programs to seamlessly inter-operate with existing ones.

2.2.3. New data sources
IPW operates on generic multiband images. Nothing about the software is res-

tricted to or specialized for a particular data source (sensor, data system, etc.). IPW’s
internal data format is extremely simple, and it has proven easy to write ingest pro-
grams to convert new types of data to the IPW format. This is important, since once an
ingest program has been written, the rest of IPW is available to the new data source.

2.3. PORTABILITY
Scientific computing is in a continual state of flux, especially in an academic

environment, where new hardware is often available at deep discounts. To take max-
imum advantage of the available computing power, it is essential that commonly-used
software be easily ported to new environments. Moreover, the data must also be port-
able, especially in a network of heterogeneous machines. Finally, investigators using
the software and data must be able to move between these environments without
retraining.

2.3.1. Code portability
IPW has been implemented from the beginning with portability in mind. This has

been achieved both by a comprehensive coding standard (see Appendix A), and by care-
ful specification of a generic target C and UNIX environment.

- 6 -

2.3.2. Data portability
The ability to run IPW on heterogeneous hardware would be seriously comprom-

ised if IPW image data could not be moved from one machine to another of different
architecture. IPW handles this by using only ASCII or unsigned binary integer data,
and by transparently adjusting the byte order of multi-byte integers. All ancillary data
in IPW images are stored in ASCII, and all pixel data are stored as (possibly multi-byte)
unsigned integers. All IPW images contain a datum identifying the byte ordering of the
machine on which they were created, and the IPW I/O routines transparently adjust the
byte order if it differs from that of the machine on which the image is being read.

2.3.3. Investigator portability
The user, programmer, and maintainer interfaces to IPW are identical across all

IPW hosts. This frees investigators from having to shift gears when they use IPW on a
variety of hardware platforms. Such investigator portability, often overlooked in
favor of exploiting unique features of particular environments, is essential if IPW is to
be usable in a heterogeneous computing environment.

2.4. UNIQUENESS
IPW attempts to fill a unique niche in the set of tools available to a remote sensing

investigator. This is not to say that IPW itself is unique in the sense that it is the only
available image processing software, but rather that IPW does not duplicate any func-
tionality already found in the UNIX environment, and works well with other tools in
that environment.

2.4.1. Avoid reinventing the wheel
The UNIX environment already provides considerable functionality that can be

directly utilized by IPW (see §2.5). IPW does not attempt to duplicate this functionality.
Unlike many image processing software systems, IPW does not contain a command
interpreter, a file system, or any general text-manipulation tools, all of which are
already provided by UNIX. While these UNIX facilities may not be perfect, they are cer-
tainly adequate, and moreover are uniform across all UNIX implementations. As much
as possible, IPW attempts to solve only image processing problems, leaving general com-
mand and data management problems to the host system.

2.4.2. Software tools philosophy
A software tool may be defined as follows:

it uses the machine; it solves a general problem, not a special case; and it’s so easy
to use that people will use it instead of building their own. [Kernighan 1976]

IPW programs are designed as tools, and the IPW function libraries are designed to
promote tool construction. Large software systems, and especially image processing
systems, have traditionally grown by accretion, with a new function or program added
for each new operation to be performed. In IPW, the emphasis is on generic operations
(§4.2) out of which more specialized operations may constructed. This both helps to
keep the overall size of IPW manageable, and to guarantee that any new additions are
of maximum utility.

- 7 -

2.4.3. Data import and export
In order to avoid reinventing the wheel, and to function as tools, IPW programs

must easily communicate with non-IPW software. Therefore, a fundamental design
decision has been to facilitate the importation of data into IPW, and the exportation of
IPW datasets to non-IPW software. It is not uncommon for IPW commands to be imple-
mented as scripts which freely intermingle IPW programs and generic UNIX commands.

2.5. UNIX
The UNIX computing environment provides an abundance of support facilities that

IPW takes advantage of. In keeping with the principle of uniqueness, every attempt is
made to exploit an existing feature of UNIX before adding a new feature to IPW.

2.5.1. Pipes and filters
One of the principal contributions of UNIX has been the paradigm of pipes and

filters [Ritchie 1974]: constraining programs to a single primary input and a single out-
put stream, and providing a command-level operator to connect the output of one com-
mand to the primary input of another. This leads to a data-driven model of computing
that adapts naturally to image processing [Hunt 1982]. To the extent possible, all IPW
programs are written as filters, and combining IPW (and non-IPW) programs into pipe-
lines is fundamental to IPW application-building.

2.5.2. Sequential processing
The pipe-filter model has an important side effect in that it mandates serial pro-

cessing: a program reading from a pipeline cannot rewind or randomly access its input
stream; similarly, data written to a pipe cannot be read back. In some respects this is
a salubrious constraint, since implementations of serial processing code tend to be sim-
ple and compact; however, some operations (e.g. requantization) require repeated
passes over data, which in turn require large memories or the use of scratch files if the
filter paradigm is to be maintained.

2.5.3. Shell
The UNIX shell is actually a high-level programming language, whose operands

are individual programs (or scripts of programs). IPW takes advantage of this by mak-
ing liberal use of shell scripts to construct application programs. Experience in shell
programming is immediately transferable to IPW application development.

2.5.4. Other UNIX commands (awk, sed, etc.)
Almost all UNIX implementations contain powerful standard utilities that IPW

takes advantage of. The awk text-processing language and sed stream editor are used
as prototyping tools for, and often in the final versions of, several applications, since
much IPW processing involves manipulating data that are stored in ASCII (e.g. image
headers) or may be easily converted between ASCII and binary (e.g. lookup tables). IPW
source code is maintained with the make recompilation manager and RCS revision con-
trol software. In general, any existing UNIX utility that is either widely available, or
freely distributable with IPW, may be an integral part of the overall IPW environment.

- 8 -

2.5.5. File system
UNIX’s hierarchical file system provides a ready-made image data cataloging sys-

tem. While a relational model might be more appropriate for an image catalog, the
hierarchical model is eminently usable, and is provided on all UNIX implementations.

2.5.6. Command syntax
IPW commands use a UNIX standard command-line syntax [Hemenway 1984] and

thus resemble most other UNIX commands. While it may be argued that this syntax is
not terribly user-friendly, it is consistent, and once mastered, is portable to all UNIX
environments. Here IPW piggybacks on the user’s existing UNIX experience, rather
than constructing an arguably better but inconsistent interface.

2.5.7. C
The C language is supported in all UNIX environments and is thus the natural

implementation language for IPW. C has often been called a ‘‘portable assembly
language,’’ in that it allows most of the low-level bit and byte manipulations formerly
possible only in assembly languages. Such operations are a cornerstone of image pro-
cessing, another reason why C is a suitable language for IPW. Finally, with suitable
discipline, it is possible to write C code that is both readable and efficient, both of
which are important for extensible image processing code.

2.6. AN OPEN SYSTEM
IPW is freely distributable. Much of the source code is in the public domain; the

remainder is copyrighted but is freely distributable. This is obviously important to
academic users with their chronic shortage of funds. However, the main reason IPW is
freely available is to maximize its utility as a tool. IPW users may become IPW pro-
grammers if they wish, since they will always have access to the source code. Bugs are
more likely to be uncovered (and fixed) if the person encountering the bug can debug
the program at the source level. Most important of all, IPW is more likely to be
extended if its source code is available for study and emulation.

2.7. COMMENTARY
The design principles enumerated in this chapter distinguish IPW from other

image processing software environments in several ways. Of these, the most important
is the extent to which IPW exploits the standard facilities of UNIX. Most other image
processing software environments (e.g., LAS [Wharton 1987] and VICAR [LaVoie 1987])
duplicate such key components of UNIX as the command language or the file system,
and thus bring needless complexity to a UNIX host.

Few existing systems have been designed from the outset for portability of both
software and data; most are inextricably tied to proprietary operating systems, display
hardware, or data representations (e.g. binary floating-point). These systems bind
their users to specific hardware and software environments, whereas IPW users may
never notice the difference between the variety of UNIX environments in which IPW is
implemented.

IPW’s emphasis on constructing operations out of pipelines of carefully-specified
generic software tools is shared by a few other software systems (e.g., HIPS
[Landy 1984] and the IM Raster Toolkit [Paeth 1986a]), but these systems have other
shortcomings with respect to the functional specifications outlined in the next chapter,

- 9 -

largely due to their having been originally designed for engineering and computer
graphic applications, rather than for remote sensing and Earth science.

- 10 -

CHAPTER 3: BRIEF FUNCTIONAL SPECIFICATION

This chapter contains a brief functional description of IPW. The system may be
characterized from three distinct perspectives:

• image data: the images and other data objects manipulated by IPW.

• user environment: the programs, scripts, and execution environment with
which an end-user of IPW interacts.

• programmer environment: the tools, function libraries, and source code used
by programmers to maintain and extend IPW.

3.1. IMAGES
The fundamental data object manipulated by IPW is an image. An image is a rec-

tangular data structure composed of equally-sized elements or samples, arranged in
lines that each contain an equal number of samples.

samples

lines

Of the four possible corners of an image, we arbitrarily define the upper left
corner as the image origin. We also arbitrarily define lines as running horizontally,
thus establishing an intrinsic coordinate system for the image. Any particular sam-
ple in the image may be located by the ordered pair of the number of the line containing
the sample (where line 0 is the first line in the image), and the number of the sample
within the line (where sample 0 is the first sample in the line):

(line,sample)

(1,3)(1,2)(1,1)(1,0)

(0,3)(0,2)(0,1)(0,0)

IPW is oriented towards the types of applications wherein a sample corresponds to
an Earth surface location. In these applications, a sample will typically assume multi-
ple coregistered values, each representing a measurement, derivation, or simulation of
some physical parameter. Thus, it is essential that IPW support multivariate samples.

In IPW, a sample is a vector of one or more bands (e.g., colors, sensor channels,
etc.). A pixel is the value of a single band within a sample; i.e., it is the datum indexed
by a particular (line, sample, band) triple.

- 11 -

............................

............................

(line,sample,band)

(1,1,1)

(0,1,1)

(1,1,0)

(0,1,0)

(1,0,1)(1,0,0)

(0,0,1)(0,0,0)

Note that the subscript order (line, sample, band) describes a particular inter-
leaving strategy; i.e., the order in which lines, samples, and bands appear in the
image. IPW images have BIP (band interleaved by pixel) interleaving [Simonett 1978],
wherein all of the pixels of a given sample are physically as well as logically contiguous.
This interleaving is the most appropriate for multiband processing operations.

Like the number of lines or number of samples per line, the number of bands per
sample is constant for a given image: an image may not have ‘‘ragged’’ boundaries in
any of its 3 dimensions.

Images have two modes in which they may exist. The external representation of
an image is as either a unique file in the UNIX file system, or the contents of a unique
interprocess communication channel (e.g., a UNIX pipe). The internal representation
of an image is as a set of C data structures containing pixel and ancillary data.

3.1.1. Headers
Each IPW image has associated with it several headers containing ancillary (i.e.,

non-pixel) data. Each header specifies a number of related attributes (geographic loca-
tion, sensor parameters, pixel quantization parameters, etc.) There are no inherent
limits to either the number of headers in an image, or the number or complexity of
attributes in a particular header.

The only required header (the basic image header), specifies the dimensions of
the image raster and the storage configuration of each band’s pixels. Another way of
stating this is: the only required ancillary information is that which is sufficient to
allow the location and extraction of the stored bit pattern for any single pixel.

IPW image header data is stored externally as printable ASCII characters preced-
ing the pixel data; thus, it is highly portable across differing hardware architectures.
The use of printable ASCII also means that header data may be examined by humans
without the use of special tools, and in non-IPW environments.

Efficiency is achieved by imposing an easily-parsed structure on the header data.
At the lowest level, header records are lines of text; i.e., sequences of ASCII characters
terminated by a newline character (ASCII NL). This text model pervades the UNIX sys-
tem and is accommodated by most UNIX tools3. Each header text line may be further
classified as either a preamble, which introduces a new header, or a datum, which
specifies a single (possibly multi-valued) attribute in a keyword=value... format.

To facilitate direct viewing of image header data by UNIX text pagination utilities
(e.g., more), the last header text line (before the beginning of the pixel data) always

3 See the description of the edhdr command in §5.2.

- 12 -

contains a formfeed character (ASCII NP) immediately preceding the terminating new-
line4. This causes the pagination utilities to pause, so they can be terminated before
attempting to write image data to a terminal screen. Also, filters such as sed or awk
can use the formfeed to recognize the end of the headers, and thus avoid processing
non-ASCII image pixel data.

3.1.2. Pixels
IPW image pixel values are represented externally as unsigned integers. This is

the most portable possible binary representation, requiring at most a change of byte
order to move between different machine architectures. It is also the traditional pixel
representation for digital image data, which simplifies the importation of existing
image data into IPW.

Each band of an IPW image has two pixel size parameters associated with it: the
number of bytes per pixel, and the number of bits within those bytes that contain sig-
nificant data. As a compromise between portability and flexibility, a pixel must occupy
either 1, 2, or 4 bytes, but may utilize an arbitrary number of the low-order bits of
those bytes5.

Unlike many other image processing systems, IPW allows different bands in the
same image to have different size pixels. This is essential for arbitrarily combining
bands of differing precision into a single multiband image. For example, a 4-band
image might contain a mix of 1-, 2-, and 4-byte pixels in each sample:

...............

...............

...............

1 sample

(L,S,0) (L,S,3)(L,S,2)(L,S,1)

3.1.3. Quantization
Pixel values in remotely sensed images are quantized approximations to meas-

urements of ‘‘real-world’’ phenomena, such as radiance, brightness temperature, or sur-
face roughness. These phenomena are typically most conveniently represented as
floating-point (i.e., real), rather than integer, quantities. However, for the reasons dis-
cussed in the previous section, it is undesirable to use floating-point as an external
representation format.

IPW solves this representation problem by storing, in an optional image header,
the parameters governing the quantization of pixel values from floating-point to
integer6. These parameters are break points defining a monotonic (hence invertible),
piecewise linear transformation. The presence of this optional header will cause IPW
components that require floating-point values to automatically perform the required
transform to retrieve input pixel values, and to automatically apply the inverse

4 This trick is borrowed from the IM Raster Toolkit software [Paeth 1986a].
5 Although an attempt has been made to keep IPW independent of the size of a byte, it has only

been used on machines with 8-bit bytes.
6 This concept derives from the ‘‘binary fraction’’ format [Frew 1984, Paeth 1986a].

- 13 -

transform to quantize output values. This quantization scheme yields the best of both
worlds: pixels are stored externally in a portable and easily manipulated format, while
an internal representation is available which recovers all of the information inherent in
the original data.

For example, a quantization parameter header for an image with a single band of
8-bit pixels might contain the following break points:

0 0.0
255 1.0

indicating that the range of unsigned integer pixel values from 0 to 255 should be
linearly mapped into the range of floating-point values from 0 to 1. The IPW component
accessing these pixels will see only values between 0 and 1, and will be unaware of the
underlying representation.

3.2. USER ENVIRONMENT
The IPW user environment is intended to be a seamless extension of the UNIX com-

mand environment:

• IPW images are ordinary UNIX files.

• The IPW ‘‘command interpreter’’ is the UNIX shell. IPW commands behave as ordi-
nary UNIX commands.

• Scripts (command files) of IPW commands may be created, using the programming
facilities of the UNIX shell.

• All components of IPW, including source code, are normally accessible to any IPW
user.

These features combine to minimize the marginal cost of learning and using IPW for
researchers already familiar with the UNIX system.

3.2.1. Data files
An IPW user perceives IPW as a collection of UNIX commands operating on UNIX

files. Although these image files have a definite internal structure imposed by IPW,
they appear to UNIX as simply an unstructured sequence of bytes. As such, they can be
processed by any normal UNIX file handling utility, such as:

• compress, to reduce the size of the stored image without loss of information;

• tar, to combine multiple images into a single portable file suitable for distribu-
tion;

• awk and sed, to process image headers.

All of these examples, that a monolithic image processing system would have to provide
for itself, are available to IPW ‘‘free’’ as part of the UNIX environment.

The hierarchical UNIX file system provides a useful means of organizing image
data, without having to build cataloging or database functionality into IPW itself. The
ability to gather related image files into arbitrarily nested directories, while preserving
the atomicity of image-as-file, is a powerful data management tool.

- 14 -

3.2.2. Primitives
Just as the basic data units in IPW are image files, the basic functional units of

IPW are the primitives, the low-level commands embodying fundamental image pro-
cessing operations.

All IPW commands are executable UNIX files, either compiled programs or com-
mand scripts. The directories containing these commands are incorporated into the
user’s shell command search path7, so the IPW commands appear to be ‘‘part of the sys-
tem’’, coequal with the standard UNIX utilities.

The syntax of all IPW commands adheres to standard UNIX usage [Hemen-
way 1984]:

command [options] [operands]

All options are single characters preceded by a hyphen. If an option accepts multiple
arguments, then the arguments are separated by commas. Operands, if present,
always represent input file names. If a command expects an input file and none is
specified, then the standard input is assumed. The standard input may also be expli-
citly specified by a single hyphen in any context where an input file name is expected.

The IPW primitives are all filters [Kernighan 1976]; that is, they read input data
from the standard input and write output data to the standard output, both of
which are predefined UNIX I/O channels, normally connected to the user’s terminal,
that may be redirected from or to files by shell operators. Primitives that accept more
than one input always provide, via options, for any one of the inputs to come from the
standard input. Primitives never produce more than one output.

Besides conceptual simplicity, the filter paradigm has the important consequence
of allowing multiple IPW primitives to be sequentially connected via pipes, a UNIX
operating system construct that links the standard output of one command to the stan-
dard input of another. This is the perhaps the single feature of UNIX most effectively
exploited by IPW, for it allows IPW primitives to behave as operators in a simple yet
powerful image processing ‘‘language.’’

3.2.3. Scripts
The programming capabilities of the UNIX shell allow IPW primitives to be com-

bined in arbitrarily elaborate scripts (i.e., executable command files). Scripts are an
essential part of IPW. They frequently allow applications to be developed entirely from
existing IPW primitives and UNIX commands.

As a simple example, given a primitive zoom which magnifies or minifies an
image by replicating or skipping an integer number of lines or samples, we can con-
struct a script ratzoom which zooms an image by a rationally-expressed non-integer
amount:

zoom -s numerator | zoom -s - denominator |
zoom -l numerator | zoom -l - denominator

where -s and -l indicate the number of samples or lines to replicate (positive count)
or skip (negative count).

7 in the PATHenvironment variable

- 15 -

Scripts are interpreted directly by the shell, so there is no compile phase in the
script development cycle. This makes scripts an excellent tool for rapidly prototyping a
potential application, even if the application is to be eventually coded as a primitive for
efficiency’s sake.

3.3. PROGRAMMER ENVIRONMENT
The distinction between an IPW user and an IPW programmer is blurred somewhat

by the programmability of the UNIX shell. Most IPW users are also ‘‘programmers’’ in
that they usually wind up creating command scripts tailored to their particular applica-
tions. We therefore use the term programmer to identify someone who develops new
IPW primitives by programming in the C language8. IPW provides the following support
for C programmers:

• an extensive function library;

• program development tools;

• program and function templates;

• on-line access to the entire corpus of IPW source code.

3.3.1. Libraries
IPW provides a library of C-callable functions, which may be grouped according to

the following capabilities:

• program command line interpretation;

• image header manipulation;

• image pixel manipulation;

• miscellaneous utility functions.

The syntax of an IPW primitive’s command line is enforced by a family of functions
that handle option and option-argument retrieval; the IPW programmer need only
specify, in a single data structure, the options and option-arguments that the program
expects.

Image header manipulation is performed by two layers of functions. At the higher
level, a set of input, output, and constructor functions are provided for each type of
header recognized by IPW. At the lower level, a set of header-independent I/O functions
are provided to facilitate the creation of new header types.

Image pixel manipulation is also performed by two layers of functions. The higher
level presents pixels as floating point quantities, while the lower level presents them as
unsigned integers. Programs may use whichever layer is most appropriate to the par-
ticular operation being performed.

Finally, utility functions are provided for common operations, such as allocation of
IPW data structures.

8 While other languages (e.g., Fortran) may certainly be used to write IPW programs, the C

language is preferable because of its ubiquity in the UNIX environment.

- 16 -

3.3.2. Tools
IPW provides several tools to assist in the development of IPW programs. The

most important of these is ipwmake , a front-end for the UNIX make utility [Feld-
man 1979] that generates customized makefile s for IPW programs and libraries. The
makefile s are created by combining generic rules, site-specific rules set up by the IPW
administrator, and an absolute minimum of program-specific information.

IPW also provides lint libraries corresponding to all IPW functions, allowing the
UNIX lint utility [Johnson 1978] to guarantee that a program is using the IPW func-
tions correctly. lint may be accessed by ipwmake , or by the ipwlint tool.

3.3.3. Templates
IPW programs and functions often have similar structures, since they must often

accomplish similar tasks. A main function will always specify its command line and
then deal with the actual arguments provided. A function that reads an image header
will always call the routines that parse keyword=value statements.

To simplify the creation of new IPW source code, elaborate templates are pro-
vided. These templates are the source code for skeleton programs and functions, and
illustrate a number of IPW coding practices:

• a recommended coding style;

• a recommended strategy for partitioning a primitive into modules;

• usage of some of the more complicated IPW functions.

• format of special comments that may be automatically converted to separate docu-
mentation.

3.3.4. Access to source code
Perhaps the most important programming aid provided by IPW is the accessibility

of the source code. The source code is the ultimate reference for the behavior of any
IPW component, and provides usage guidelines beyond those available from the tem-
plate files. The source code is also the principal low-level documentation for IPW, since
each source file contains special header comments which are extracted and reformat-
ted by the ipwman command. This tends to ease the burden on the programmer of pro-
ducing written documentation, since a usable form of documentation may be main-
tained in the code itself.

3.4. COMMENTARY
Two of the functional aspects of IPW are, so far as we know, unique. The first of

these is the exclusive use of BIP interleaving for multiband images. This interleaving
style is particularly suited to images with a very large number of bands, such as are
obtained from imaging spectrometers. Few other image processing systems support BIP
interleaving, and those that do must usually support other interleaving strategies as
well (e.g., [LaVoie 1987].) IPW opts for the simplicity of a single format, at the possible
cost of a slight increase in processing overhead for images with relatively few bands.

The other functionally unique aspect of IPW is its representation of floating-point
pixel values as piecewise-linearly-quantized binary integers. Most other image process-
ing systems either do not support floating-point pixel values at all, or do so using the
host system’s native (and nonportable) binary floating-point format. The IM Raster
Toolkit [Paeth 1986a] is a notable exception in that it allows integer pixel values in the

- 17 -

range 0..2nbits−1 to be optionally mapped into the floating-point range 0..1; however, this
range may not be changed. In IPW, any monotonic mapping between integer and
floating-point values is allowed, which allows enormous flexibility in specifying the
range and precision of floating-point pixel values, while maintaining an efficient and
portable storage format.

- 18 -

CHAPTER 4: THE USER LEVEL

This chapter contains a description of the user-level interface to IPW. We begin
with a description of the IPW commands that function as ‘‘sources’’ and ‘‘sinks’’; i.e.,
commands that prepare existing digital image datasets for processing by IPW, and com-
mands (e.g., image display) that deal with the results of IPW processing operations. We
then describe the basic IPW image processing commands; i.e., the primitives that
embody generic image processing operations. Finally, examples of complex processing
sequences are given, including some that would typically be embodied in scripts and
thus appear to be ‘‘commands’’ themselves.

The two most fundamental IPW commands should be mentioned here. They are
ipw , which displays a list of all available IPW commands, and ipwman , which displays
the documentation for a particular IPW component (command, function, or file format).
Entering the command ipw is a simple way to determine if your UNIX account is prop-
erly set up for IPW; if this command doesn’t work, see §5.1. For information about any
command listed in the output of ipw , type ipwman command.

The remainder of this chapter contains examples of the use of most IPW com-
mands. Reference documentation for these commands is found in Chapter 5.

4.1. DATA MANAGEMENT
There are several IPW commands that do not perform image processing per se, but

instead perform vital data management functions. These include:

• ingestion: converting existing digital images to a format that IPW understands;

• ancillary data: creating and modifying optional image headers;

• format conversion: creating multiband images, and incorporating non-image
spatial data;

• exporting: converting IPW images to formats suitable for display or export to
other processing environments.

Since these components are typically the first to be utilized by a new user of IPW, they
will be described here, before the actual image processing commands.

4.1.1. Importing image data
Importing image data into IPW is a three-step process:

• express the basic geometry of the image as an IPW basic image header;

• express any ancillary data as an appropriate combination of IPW optional headers;

• convert the image pixel data to a format understood by IPW.

(Creation of optional headers is discussed in §4.1.2.)

An IPW basic image header (BIH) contains the following per-image (i.e., same for
all bands) information:

• number of lines in the image

• number of samples per line

• number of bands per sample

The BIH also contains the following per-band information:

- 19 -

• number of bytes per pixel

• number of bits per pixel

• annotative text (optional)

An IPW basic image header is created by the mkbih command. By default, mkbih
assumes a single-band image with 1-byte, 8-bit pixels, so a minimal BIH may be created
by the command:

mkbih -l #lines -s #samples

As specified, this command will write a BIH to the standard output, and then attempt
to copy the appropriate number of image data bytes from the standard input to the
standard output. So, if a data file raw_image exists that contains nothing but the pix-
els for a 512 line by 512 sample image, then the corresponding IPW image would be
created by:

mkbih -l 512 -s 512 <raw_image >ipw_image

Often it is inconvenient to supply the raw image data as the standard input for
mkbih . For example, if an extremely large image is being read from tape, then forcing
mkbih to copy it can be rather inefficient. Instead, the -f option can be used to tell
mkbih to write a stand-alone header, to which the image data are later appended; e.g.:

mkbih -l 6000 -s 7000 -f >ipw_image
dd bs=7000 < tape >>ipw_image

What if an image to be imported into IPW contains its own header data? There are
several ways to deal with this. If a fixed number of bytes of non-pixel data precede the
image data, then they may be skipped using the bs= and skip= options with the UNIX
dd command, and the result may either be piped to mkbih , or appended to an existing
header as in the previous example. Similarly, non-pixel data following the last of the
image data (i.e., ‘‘trailers’’, as opposed to headers) may be ignored by using the bs= and
count= options with dd .

What about multiband images? If the raw image is already band-interleaved-by-
pixel, then supplying the appropriate options to mkbih is sufficient. Unfortunately, the
IPW BIP format is not common. Far more common are the band-interleaved-by-line
(BIL) and band-sequential (BSQ) formats. In both of these cases, the strategy is to use
IPW tools to break these images up into multiple single-band images.

A raw image in BSQ format is logically indexed as:

[band][line][sample]

which is another way of saying: all pixels for a given band are physically contiguous.
The simplest way to deal with a BSQ image is:

• Append the raw data to a BIH which denotes 1 band, #samples samples per line,
and #lines* #bands lines.

• Use the IPW command window (see §4.2.4.1) to extract each band from this
image.

This example illustrates the ingestion of an xim 9 color image, with 512 lines, 512

9 xim is a freely-distributable image display package for the X Window System.

- 20 -

samples per line, and 3 8-bit channels (note that the dd command is instructed to skip
the 1024-byte xim header):

dd bs=1024 skip=1 < xim_file | mkbih -l 1536 -s 512 >xim.bsq
window -n 512,512 <xim.bsq >xim.0
window -n 512,512 -b 512,0 <xim.bsq >xim.1
window -n 512,512 -b 1024,0 <xim.bsq >xim.2

A raw image in BIL format is logically indexed as:

[line][band][sample]

which is another way of saying: all pixels for a given line are physically contiguous. A
similar technique to that used for BSQ images may be employed; in this case, the IPW
BIL image will be declared with 1 band, #samples* #bands samples per line, and #lines
lines.

This example illustrates the ingestion of an AVIRIS10 image, with 256 lines, 640
samples per line, and 192 bands (each band has 10-bit pixels):

mkbih -l 256 -s 122880 -i 10 -f >aviris.bil
dd bs= blocksize skip= header_blocks <tape >>aviris.bil
window -n 256,640 <aviris.bil >aviris.0
window -n 256,640 -b 0,640 <aviris.bil >aviris.1
window -n 256,640 -b 0,1280 <aviris.bil >aviris.2
...

Multiband IPW images may be assembled from multiple single-band images with the
mux command, described in §4.1.3.

Finally, it should be mentioned that textual image data (i.e., pixel values
expressed as printable text) can be converted to an IPW image with the support com-
mand atob . This command converts decimal integers expressed as printable text (e.g.,
ASCII) to binary integers. For example, a file of ten thousand integers with values
between 0 and 255 generated by, say, a statistical package, could be converted to a 100
by 100 IPW image as follows:

atob -1 < text | mkbih -l 100 -s 100 > image

where the -1 option indicates that atob should output 1-byte unsigned integers.

4.1.2. Optional headers
The BIH is the only IPW header which must always be present. All other headers

are optional (although some particular commands may require them). The BIH is also
the only header which contains per-image information; for all other headers, a separate
instance of the header must be present for each band to which the header applies.

Analogous to mkbih , there are IPW commands provided for each optional header
type, that will create one or more headers of that type and insert them into an IPW
image. These commands take an existing IPW image as input and write it, with the
newly created headers, to the standard output. The newly-created headers replace any
existing headers of the same type in the specified bands.

10 Airborne Visible and InfraRed Imaging Spectrometer

- 21 -

The optional header creation commands all have names of the pattern mkhdrh,
where hdr is the IPW name of the optional header. Some currently supported optional
headers are:

name description
geo geographic location
lq linear quantization parameters
sat satellite parameters
sun solar position
win window coordinates

All of these commands accept a -b band,... option, specifying which bands the header
is to be applied to (the default is all bands), and a -f option, which causes all input
headers, and the newly-created headers, to be output, without any image data11; this
allows the creation of a standalone BIH followed by optional headers, for use in an
ingest scenario such as was described in the previous section.

As an example, the following adds a sat header to the Landsat Thematic Mapper
data stored in image :

mksath -p Landsat-5 -s TM -l 045-034 -d 1988,2,15 image

This specifies a satellite header indicating the Landsat 5 platform, the Thematic
Mapper sensor, a World Reference location of path 45, row 34, and an acquisition date
of 15 February 1988. A copy of image with the new satellite header is written to the
standard output.

4.1.3. Multiband images
The concept of a multiband image is central to IPW, and it is often necessary to

merge or separate image data according to bands. Since the IPW BIP interleaving stra-
tegy is a form of ‘‘multiplexing’’, the IPW commands that manage the assembly or
decomposition of multiband images are called mux and demux.

mux reads multiple input images and writes a single multiband output image,
which has a number of bands equal to the sum of the number of input bands. The input
images may each have an arbitrary number of bands, but they must all have the same
number of lines and number of samples per line. As a simple example, the command:

mux red green blue >color

combines the images red , green , and blue into a single output image color .

The converse of mux is demux, which reads a multiband input image and writes
an output image containing only selected input bands. To continue with the above
example, the command:

demux -b 2 color >blue

would extract band 2 (0-relative) from color and write only that band into the output
image blue .

11 Note that this is not precisely the same behavior as the -f option to mkbih , since all of the
optional header creation commands still require at least a BIH as input.

- 22 -

mux and demux are frequent sources and sinks for processing pipelines. For
example, mux is often needed to assemble a multiband image for input to an IPW primi-
tive that does some form of multivariate processing. demux is often needed to select a
single channel for display. Since all IPW image headers are bound to a particular band,
mux and demux can easily preserve any ancillary information.

4.1.4. Masks
Many IPW primitives accept an optional mask as input, either as the highest-

numbered input image band, or as a separate, single-band image. In either case, pro-
cessing of input pixels by the primitive is restricted to those samples which correspond
to non-zero pixels in the mask. The principal use of masks is to define non-rectangular
regions of interest.

For example, suppose that dem is a digital elevation model that includes a
drainage basin for which elevation statistics are desired, and basin is an image
(registered to dem) that contains nonzero values in every pixel located in the drainage
basin. Then:

hist -m basin dem

would write a histogram of the elevations in the drainage basin to the standard output.

4.1.5. Point and vector data
While IPW is entirely a raster-oriented system, there are provisions for incorporat-

ing point and vector data into IPW images. Point data, expressed as printable text, may
be inserted into an image with the edimg command. Vector data, also expressed as
printable text, may be digitized by the poly command into points suitable for input to
edimg .

A point datum is a single line of text with the format:

line sample value

where line and sample are intrinsic image coordinates, and value is the value of the
pixel(s) at (line, sample). The edimg command reads two inputs, an image and a file of
point data, and writes an output image that is a copy of the input image, except that
each pixel with an associated point datum has that datum’s value (i.e., the point data
replace the input image data, where their coordinates coincide). For example:

edimg -i image
100 200 255

would write a copy of image to the standard output, but with the pixel(s) at line 100,
sample 200 set to value 255. A typical use of edimg would be to superimpose field
measurements on an image of the field study area.

Vectors represented by their endpoints may likewise be superimposed on images
by pre-processing the endpoints with the poly command. poly reads point data
(without values) and writes the points and the digitized coordinates of the lines con-
necting them. If the points are the vertices of a closed polygon (i.e., the first vertex is
also the last), then poly may also optionally fill the polygon; i.e., write the coordinates
of all points interior to the polygon, in addition to the polygon’s outline. In either case,
the output of poly is fed as input to edimg .

- 23 -

For example, if the file counties contains the endpoints of vectors delineating
county boundaries, then the following command sequence:

poly counties | edimg -i dem

will scribe those boundaries onto a digital elevation model dem and write the result to
the standard output.

4.1.6. Exporting image data
Exporting image data from IPW involves converting the image data from the stan-

dard IPW format to a format expected by a particular display device or non-IPW
software. IPW provides specific conversion programs for a few common formats, plus a
generic procedure for converting image data into a portable format. In almost all cases,
the exported image must be single band, so demux is a necessary tool when preparing
images for export.

The IPW command sunras reads a single-band IPW image with either 1 or 8 bits
per pixel, and writes a Sun ‘‘rasterfile’’ [Sun 1988], suitable for further processing by
Sun software, or for display by the rastool command.

The pspic command reads a single-band IPW image with no more than 1 byte per
pixel, and writes a PostScript [Adobe 1985] image, suitable for display on any
PostScript output device (window system, laser printer, etc.)12.

The ipw2xim command reads a single-band IPW image with no more than 1 byte
per pixel, and writes an xim -format image. The output image may be displayed on any
device running an X window system server [Scheifler 1986], by the xxim client pro-
gram.

In general, most non-IPW image processing software can handle single-band IPW
image data (perhaps with bytes swapped), but cannot interpret IPW headers. There-
fore, the headers should be stripped from the exported image with the rmhdr com-
mand. This command reads an IPW image and writes only the image data (therefore,
its output is not a valid IPW image). If the exported image is being written to tape, it
is customary to make the block size equal to the number of bytes per image line, as a
convenience for some non-UNIX systems where the physical attributes of a file affect its
logical structure. For example, the following command sequence writes a 3-band IPW
image (640 samples per line, 1 band, 1 byte per pixel) to tape as a sequence of 3 header-
less files:

demux -b 0 image | rmhdr | dd obs=640 > tape
demux -b 1 image | rmhdr | dd obs=640 > tape
demux -b 2 image | rmhdr | dd obs=640 > tape

where tape is a ‘‘no-rewind-on-close’’ tape device.

For situations where image data must be exported in a textual form (e.g., for input
to a statistical package), the command:

primg -a -i image

may be used to print the value of every pixel in image on the standard output as

12 For example, an 8-bit PostScript image is automatically halftoned when displayed on a
monochrome PostScript laser printer.

- 24 -

readable text, one sample per line, with as many values per line as there are bands in
the input image.

4.2. GENERIC IMAGE PROCESSING OPERATIONS
The IPW image processing primitives are designed around the notion of generic

image processing operations. Broad classes of image processing operations have been
identified, and IPW primitives have been built to provide the most general-purpose cov-
erage of these operations.

Four classes of image-based operations may be identified [Castleman 1979]:

• univariate point operations, whose contexts are single pixels;

• multivariate point operations, whose contexts are two or more pixels within a
sample;

• neighborhood operations, whose contexts are pixels within contiguous samples;

• geometric operations, which copy pixel values from one sample to another.

4.2.1. Univariate point operations
In univariate point operations, pixel values in the output image are solely a func-

tion of the corresponding pixel values in the input image:

OUTline,sample,band = f (INline,sample,band)

The function f may be definable a priori (e.g., logarithm, exponential, scaling by a con-
stant, etc.); or it may involve computing image statistics (e.g., normalization using
image mean and standard deviation); or it may be hardware-dependent (e.g., pseu-
docolor mapping of a single-channel image).

Since only a single input pixel is required to generate an output pixel, univariate
point operations do not require random access to the input image. This meshes well
with the IPW’s model of image processing operations communicating by pipes.

4.2.1.1. Lookup tables

In IPW, the generic univariate point operation is implemented by the lutx primi-
tive. lutx accepts two inputs, an image and a lookup table. The pixels of the input
image are mapped through the lookup table, and the mapped values are written to the
standard output.

The lookup table input to lutx is actually an IPW image, with the following spe-
cial properties:

• exactly 1 line;

• at least as many bands as the input image;

• 2nbits samples per line, where nbits is the maximum number of bits per pixel in the
input image.

An input image pixel value is used as a sample coordinate in the lookup table, and the
value of the corresponding pixel for the same band becomes the output value:

OUTline,sample,band = LUT 0,INline ,sample ,band ,band

Since lookup tables are images, they have (at least) a basic image header, followed
by binary integer pixel data. Therefore, the simplest way to create a lookup table is to
create a basic image header and append binary data to it. For example, assume the file

- 25 -

lut_text contains 256 printable integers, one per line, with values between 0 and 255.
Then the command:

atob -1 lut_text | mkbih -l 1 -s 256

will write a single-band, 256 element lookup table to the standard output.

Creating lookup tables from text files is common enough that IPW provides tools to
help simplify the procedure. The command

mklut -i inbits -o outbits -k bkgd

creates a single-band lookup table capable of mapping inbits-bits input pixels into
outbits-bits output pixels. All output values are initialized to bkgd (which of course
must be between 0 and 2outbits−1). mklut then reads pairs of text integers, one per
line, from the standard input:

in out
in out
...

and sets each lookup table sample in to the value out. For example, the following com-
mand sequence:

mklut -i 8 -o 8 -k 0
100 255

creates a lookup table that will map input pixels with value 100 into value 255, and
map all other input pixel values to 0.

The command interp is useful in conjunction with mklut when a range of input
values is to be linearly mapped into a range of output values. interp , like mklut ,
read pairs of text integers from the standard input. interp ’s standard output is the
input pairs, plus any intervening input values and the corresponding, linearly interpo-
lated output values. For example, the command sequence:

interp | mklut -i 12 -o 8
0 0
4095 255

creates a lookup table capable of converting 12-bit input pixels to 8-bit output pixels,
using linear scaling.

4.2.1.2. Histograms

There is a subset of univariate point operations, which might be called ‘‘univariate
summary operations’’, in which the output is not an image, but a summary of some
univariate property of the input image. The most important of these summary opera-
tions is the computation of a histogram of the image’s pixel values.

An IPW histogram is represented externally as an IPW image, with the same pro-
perties as a lookup table. For a given band, an input image pixel value is used as a
sample coordinate in the histogram, and the value of that histogram pixel is the fre-
quency of the input pixel value (i.e., the number of times the pixel value occurred in the
input image):

- 26 -

..............

..............

..............

..............

..............

sample 1sample 0

F(1,1)F(1,0)F(0,n-1)F(0,1)F(0,0)0
line

where F (i, j) is the frequency of pixel value i in input band j.

Some IPW commands use the histogram as an intermediate step in a complex cal-
culation. For example, a common image enhancement processing sequence is:

hist image | histeq | lutx -i image

hist calculates the histogram of image; histeq converts the histogram to a lookup
table; and lutx applies the lookup table to image. The overall purpose of this pipeline
is to create an output image with a flat or ‘‘equalized’’ histogram [Pratt 1978]; i.e., an
output image in which every possible pixel value has an equal probability of occurring.

Often there is considerable information for an analyst in a graphical display of the
image histogram. The IPW command grhist converts an IPW histogram to a form
suitable for display by the UNIX plot command:

hist image | grhist | plot

The histogram will be displayed as bar graph with labeled axes. The format of the
display may be controlled by options to grhist , which accepts the same arguments as
the UNIX graph command13.

4.2.2. Multivariate point operations
Multivariate point operations combine multiple coregistered input pixels into a

single output pixel. There are two ways to perform these operations. One is to combine
multiple input images:

OUTline,sample,band = IN 0
line,sample,band op . . . op IN N −1

line,sample,band

The other strategy, and the one adopted by IPW, is to combine the bands of a single
input image:

OUTline,sample, 0 = INline,sample, 0 op . . . op INline,sample,N −1

The band-combination method allows all input for a multivariate point operation to be
provided on a single input stream, and thus allows more flexibility when incorporating
a multivariate point operation into a pipeline.

Note that multivariate point operations usually cannot be implemented as lookup
tables, since the cardinality of the table would increase exponentially with the number
of input pixels required to generate an output pixel.

While multivariate point operations do not require random access to the input
image, they may require an entire input sample to generate an output pixel14.

13 grhist is just a shell script ‘‘wrapper’’ that invokes the graph command.
14 This can be a non-trivial amount of data for imaging spectrometers with several hundred

bands.

- 27 -

4.2.2.1. Algebraic operations

The most important multivariate point operations are those that yield algebraic
combinations of their input values. IPW provides three primitives implementing these
combinations.

• bitcom performs bitwise logical operations on pixels;

• lincom computes a weighted sum of pixels;

• mult computes a pixel product.

Each pixel output from bitcom is a bitwise logical combination (AND, inclusive-
OR, exclusive-OR) of the corresponding input pixels. A typical application would be to
‘‘black out’’ the portions of an image outside a region of interest, by AND-ing the image
with a mask of the region:

mux image region | bitcom -a -m

Here the -m option indicates that the final input band is a mask, as described in
§4.1.4.

Each pixel output from lincom is a linear combination of the corresponding input
pixels.

OUTline,sample, 0 =
i =0
Σ

N −1
CiINline,sample,i

where Ci is the user-specified weight for band i. The default weights are
N
1___ , so just:

lincom

by itself outputs an average of all input bands.

Negative weights cause subtraction instead of addition. For example:

lincom -c 1,-1

subtracts the second input band from the first.

Three bands representing red, green, and blue may be combined into a single
‘‘black-and-white’’ image by:

lincom -c 0.299,0.587,0.114

which weights each color according to its contribution to NTSC luminance [Pratt 1978].

Each pixel output from mult is the product of the corresponding input pixels.
Optionally, pixels in selected input bands may be replaced by their reciprocals before
the multiplication is performed; this allows mult to do division as well as multiplica-
tion. For example:

mux num denom | mult -r 1

computes the ratio of the single-band images num and denom.

4.2.2.2. Statistics

The primitive mstats computes the basic multivariate statistics of a multichannel
input image, and writes the statistics as text on the standard output. The values com-
puted include the mean and variance of each input band, and the covariance of each

- 28 -

pair of input bands.

The output from mstats is useful in a variety of contexts. For example, it is
fairly straightforward to compute the eigenvectors of the variance-covariance matrix
[Press 1988], which can then be used as lincom coefficients to produce principal com-
ponent images [Green 1976].

mstats accepts an optional second input image which indicates classes for which
separate sets of statistics should be computed. The value of each pixel in the class
image is the class to which the corresponding input sample should be assigned. A
separate set of output statistics will be produced for each distinct class. (If a class
image is not supplied, then all samples in the input image are assumed to be in class 0.)
For example, the classes could be associated with the training sites for a Bayesian clas-
sifier [Richards 1986], which would be driven by the statistics output from mstats .

4.2.2.3. Specialized operations

The primitives described so far are sufficient to implement most multivariate
point operations, but not always with acceptable efficiency. For example, a problem
that frequently arises in surface climate studies is the computation of the cosine of the
local solar zenith angle, which is used to weight calculations of the solar beam irradi-
ance. Given the slope S and azimuth A of the local gradient (see §4.2.3.2), the cosine of
the solar zenith angle θs is given by [Sellers 1965]:

cosθs = cosθ0 cosS + sinθ0 sinS cos(φ0 − A)

where θ0 and φ0 are the solar zenith and azimuth relative to a horizontal surface.

This calculation could be performed by a sequence of lincom s, mult s, and lutx s
(to evaluate the trigonometric functions), but it would be slow, and would involve the
creation of several temporary files. Since this calculation is performed often enough for
its speed to be a consideration, it has been embodied in its own primitive shade , which
accepts a 2-band gradient image as its input, and writes an image of cosθs values as its
output.

4.2.3. Neighborhood operations
Neighborhood operations combine multiple contiguous input pixels into a single

output pixel:

OUTline,sample,band = F (INL 1 ,S 1 ,band , ..., INLU ,SV ,band)

where L 1 ≤ line ≤ LU and S 1 ≤ sample ≤ SV (i.e., the input neighborhood is U lines by V
samples). The neighborhood is also called a window or a kernel.

Whereas point operations can be implemented using simple sequential image
access, neighborhood operations must maintain more context in the input image. Given
the external geometry of an IPW image, the minimum necessary context is almost
always U lines of the input image, over which the U by V kernel is passed. This still
allows reasonable throughput in a pipeline, since the neighborhoods may be processed
in output pixel order, and the output pixels can be written as soon as they are calcu-
lated.

- 29 -

4.2.3.1. Convolution

Convolution, or spatial filtering, is a neighborhood operation that computes an
output pixel value from a weighted sum of the input neighborhood pixels:

OUTline,sample,band =
i =line −

2
U___

Σ
line +

2
U___

j =sample −
2
V___

Σ
sample +

2
V___

Wi, jINi, j,B

Convolution is implemented by the IPW primitive convolve , which reads an input
image and a text file of weights, and writes a filtered output image. The weights are
specified as a kernel size, followed by the weights for each pixel in the kernel. For
example:

convolve -i image
3 3
1 1 1
1 1 1
1 1 1

writes an image each of whose pixels is the sum of the neighboring 9 pixels in the input
image. The general format of the weights file is:

WU −1,0

 . . .
W 0,0

 . . .
 . . .

 . . .

WU −1,V −1

 . . .
W 0,V −1

U V

Some other useful kernels are Sobel operators, for directional edge detection:
[Duda 1973]:

3 3 3 3
-1 0 -1 -1 -2 -1
-2 0 -2 0 0 0
-1 0 -1 1 2 1

and the digital Laplacian, for edge enhancement:

3 3
0 -1 0

-1 5 -1
0 -1 0

(This kernel actually represents an equal weighting of the original image and the
Laplacian, which tends to produce a visually pleasing ‘‘sharpening’’ of the image.)

4.2.3.2. Gradient

A special neighborhood operator that is used frequently enough to warrant its own
primitive is the gradient. The gradient of a surface is a vector quantity. Since the
gradient is used most often in calculations involving digital elevation models (DEMs),
we use the terms slope (S) for the magnitude of the gradient, and azimuth (A) for its
direction. These components are defined as [Dozier 1989]:

tanS = H
I (∂Z/∂x)2 + (∂Z/∂y)2 J

K
1/2

- 30 -

tanA =
− ∂Z/∂x
− ∂Z/∂y________

Z is elevation. The partial derivatives are computed as:

∂x
∂Z___ =

2∆h

Zline, sample+1 − Zline, sample−1_________________________

∂y
∂Z___ =

2∆h

Zline+1, sample − Zline−1, sample_________________________

where ∆h is the line and sample spacing.

As with shade , a combination of convolve s, lutx s, and lincom s could perform
the gradient calculation, but with an unacceptable overhead. Hence the primitive gra-
dient implements these calculations directly. gradient reads a DEM image and
write a 2-band image (slope and azimuth). The integrated implementation allows for
such optimizations as storing slopes as quantized sines; this increases the precision of
representation of shallow slopes, which are most common in natural terrain.

4.2.4. Geometric operations
Geometric operations change the locations of samples in the output image, with

respect to the input image:

OUTi, j,band = INu,v,band

Geometric operations are defined by the mapping function that matches output to
input image coordinates:

v = FV(i, j)
u = FU (i, j)

There are two broad classes of geometric operations, based on the relative com-
plexity of the mapping functions. The most complicated operations are those in which
the functions F:

• are independent;

• may yield non-integral values for i and/or j.

This class of operations is often called warping. Implementing these operations
requires:

• exhaustive evaluation of F;

• resampling of IN, to interpolate pixel values at non-integral coordinates.

These function were implemented in IPW’s predecessor QDIPS [Frew 1984], but have not
yet been reimplemented in IPW.

The simpler class of geometric operations are implemented by a variety of IPW
primitives, which in combination can produce many of the effects that would normally
require warping, at a considerable savings in complexity and execution time.

4.2.4.1. Subscene extraction

The simplest geometric operation involves creating an output image that is a rec-
tangular subset of an input image. This is accomplished by the window primitive.
window accepts a variety of specifications of the subscene to be extracted:

- 31 -

• beginning pixel

• end pixel

• center pixel

• number of pixels

For example:

window -b 2,2 -n 5,5

extracts a 5 line by 5 sample subscene from the input image, beginning at line 2, sam-
ple 2.

210

sample

2

1

0line

window also allows the subscene to be specified in extrinsic coordinates, if the
input image has a geo or win header.

4.2.4.2. Reflection

Another useful geometric operation involves reflecting an image about either its
horizontal or vertical axes; i.e., reversing its line and/or sample ordering. This is
implemented by the IPW flip primitive. For example:

flip -s

produces a mirror of the input image, by reversing the order of sample in each line,
while:

flip -l -s

also reverses the order of the lines in the image, effecting a 180 degree rotation of the
input image.

4.2.4.3. Transposition

Transposing an image involves exchanging the order of its lines and sample:

OUTi, j,band = INj,i,band

In IPW this is implemented by the transpose command. This implementation is quite
fast: the output image is kept in memory, and each line of the input image is scattered

- 32 -

into the output image as it is read.

transpose is seldom used as an end in itself, but it is an indispensable component
of many processing pipelines. For example, the combination of flip and transpose
may be used to effect right-angle rotations. To rotate an image 90° clockwise:

flip -l | transpose

To rotate an image 90° counterclockwise:

flip -s | transpose

4.2.4.4. Zooming

Although magnifying or minifying an image by arbitrary factors necessitates
resampling, a reasonable approximation may be achieved by replicating or skipping
image lines and/or samples. This ‘‘integral zooming’’ is implemented by the IPW zoom
primitive.

A simple example would be:

zoom -s 2 -l 2

which replicates each input sample and line, effecting a 2x zoom. (The line and sample
factors need not be identical.)

Zooming by non-integer factors can be simulated, if the factor is rationally expres-
sible. In this case, a pipeline of two zooms is used: the first magnifies by the numera-
tor of the zoom factor, and the second minifies by the denominator of the zoom factor.
For example, suppose an image must be shrunk in the sample dimension only by a fac-
tor of 3/4, for display on a monitor with a 4:3 aspect ratio:

zoom - s 3 | zoom -s -4

(A negative zoom factor indicates minification.)

4.2.4.5. Shearing

The primitive skew shears an image horizontally; i.e., it horizontally displaces the
origins of the input image lines. The amount of shearing is specified as the angle from
the left edge of the output image to the left edge of the input image. For example:

skew -a 30

shears the input image 30 degrees clockwise (negative angles are counterclockwise).

skew , like transpose , is most useful as component in a pipeline. For example,
combinations of skew , flip , and transpose may be used to produce an output image
whose lines are oriented at an arbitrary angle with respect to the input image. This
allows scanline-type algorithms to be applied in an arbitrary direction across an image.

4.3. EXAMPLE APPLICATIONS
We close this chapter with some illustrations of how the IPW primitives may be

combined to produce complex processing sequences. It should be remembered that any
processing sequence may be preserved in a shell script and may thus also appear to be
a ‘‘primitive’’ operation to an IPW user.

- 33 -

In [Paeth 1986b] a scheme is outlined whereby an image may be rotated through
an arbitrary angle using sequences of shearings, reflections, and transpositions. The
following is an example of this method implemented as a pipeline of IPW primitives.

skew -h -a { θ/2} |
flip -l |
transpose |
skew -h -a { tan−1sinθ} |
flip -s |
transpose |
skew -h -a { θ/2}

The output of this pipeline is the input image rotated θ degrees clockwise. Note the -h
option to skew , to override any existing skew header in the input image.

A parallelepiped classifier [Richards 1986] is perhaps the simplest mechanism
for classifying a multiband image. Each class is characterized by a minimum and max-
imum pixel value in each band15. If the number of classes is limited to the number of
bits in a pixel, then a straightforward implementation is possible in IPW. First, a
lookup table is constructed for each input channel, mapping the pixel values in that
band into a class code, which must be a power of 2:

interp | mklut -i inbits -o nclasses > class_lut. i
class_1_min 1
class_1_max 1
class_1_max+1 0
class_2_min-1 0
class_2_min 2
class_2_max 2
...

Note that if class_1_max and class_2_min differ by more than 1, then the intervening
values must be explicitly set to 0. This process is repeated for each input band. Then:

mux class_lut.* | lutx -i image | bitcom -o

lutx converts each band to the classes in that band. bitcom ORs the classes together
into a single output class. Samples that have the same class in each band will have a
single bit, the class code, set in the corresponding output pixel. Samples that could not
be unambiguously classified will have more than one bit set in the corresponding output
pixel.

4.4. COMMENTARY
There are many aspects of the IPW user level that contrast sharply with other

image processing environments. The most general is the decoupling from a display dev-
ice that is a natural consequence of IPW’s pipes-and-filters user interface. In IPW, a
display is no more than a ‘‘sink’’ at the end of a processing pipeline; the program at the
end of the pipeline containing the only display-dependent code. By contrast, many
display-based image processing systems (e.g., [Adams 1979]) require the presence of the

15 The ‘‘parallelepiped’’ is the N-dimensional (N = number of bands) object whose vertices are
these minima and maxima.

- 34 -

display device and its associated hardware to perform any image processing operations,
even those whose results need not necessarily be displayed.

In many image processing systems (e.g., [LaVoie 1987]), selection of a subscene for
processing, in either the spatial or spectral dimensions, is provided by all of the opera-
tors in the system (e.g., as part of the syntax of the command language). IPW isolates
these functions into separate commands, which results in a conceptually much simpler
system.

The ability of many IPW commands to treat ordinary images as processing masks
is likewise unusual.

The presence of commands for dealing with point and vector data in IPW reflect
IPW’s origin in investigations where remote sensing data are frequently combined with
point field measurements. The simplicity of these commands also reflects IPW’s design
goals. Basically, provisions are made for inserting and extracting point data into and
from an image; all operations beyond these take place either on IPW images, or outside
IPW using the textual representation of the point data. The exception to this is IPW’s
sole provision for vector or polygonal data - the poly primitive merely interpolates
point data into the image pixels lying along a line segment or within a polygon.

The ability to control the precision of pixel representation at the binary level
allows IPW to store both lookup table and histogram data as if they were single-line
images, thus simplifying I/O on these common data structures, and also allowing them
to be processed by the full range of IPW operations.

Certain generic operations are implemented in unique ways by IPW. Univariate
point operations are lookup-table driven, requiring only the lutx command to imple-
ment them; this is in contrast to many other systems where each such operation is
implemented by a separate command. Multivariate operations usually operate by com-
bining bands of a single input image, rather than by combining multiple input images;
this allows multivariate operations to be inserted into a processing pipeline.

- 35 -

CHAPTER 5: USER’S MANUAL

This chapter contains terse but complete references for all IPW commands nor-
mally used by a non-programmer. These commands constitute the primary user inter-
face to IPW.

5.1. INTRODUCTION AND INITIALIZATION
Before accessing any IPW commands, the following elements of a user’s UNIX

environments must be appropriately initialized:

• IPW-specific environment variables

• command search path

IPW is normally installed in its own directory16. The full pathname of this direc-
tory must be accessible in the user’s environment variable IPW. In addition, some IPW
programs will create scratch files in the directory whose full pathname is in the
environment variable TMPDIR. If this variable is not defined, the scratch files may be
placed in a file system too small to accommodate large image files.

The directories containing the IPW commands must be included in the user’s com-
mand search path (the PATH environment variable). These directories always include
$IPW/bin and $IPW/etc , and may include additional site-specific directories.

At most IPW sites, the system administrator will have provided a file
$IPW/pub/cshrc that correctly initializes the environment variables and search path
for csh users17. IPW users need therefore only add the single line:

source ˜ipw/pub/cshrc

to their ˜/.cshrc files, and the proper IPW environment will be automatically initial-
ized each time they log in.

Once the environment is initialized for IPW, the user accesses IPW commands sim-
ply by typing their names.

5.2. COMMANDS
This section contains copies of the on-line documentation for each IPW command

used by non-programmers. The on-line documentation is stored as header comments
in the corresponding IPW source files, and is displayed on an IPW user’s terminal by the
ipwman command. These constraints preclude the use of multiple fonts or non-ASCII
characters, so the documentation is reproduced here in a single constant-width (‘‘type-
writer’’) font.

In addition to standard format for program header comments18, the following
notational conventions are observed:

(val1, val2)
Two values separated by a comma and enclosed in parentheses are an ordered
pair, usually indicating a particular sample location in an image.

16 See Chapter 8.
17 Some IPW sites may also provide shrc and kshrc files for sh and ksh users.
18 See §A.1.1.1.

- 36 -

" text"
Any text enclosed in double-quotes is literal; i.e., should be used exactly as shown.

- The - (minus sign), used as a file name, always indicates the standard input.

* An asterisk embedded in a file or command name is wild card, matching any
number of characters (e.g., mk*h would match all IPW commands whose names
begin with mk and end with h.)

- 37 -

BITCOM BITCOM

NAME
bitcom -- bitwise band combination

SYNOPSIS
bitcom -{aox} [-m] [image]

DESCRIPTION
bitcom reads a multi-band image from {image} (default:
standard input), and writes a single-band image to the
standard output. The output image is a bitwise combination
of all input bands.

OPTIONS
-a Compute bitwise AND of input bands.

-o Compute bitwise inclusive-OR of input bands.

-x Compute bitwise exclusive-OR of input bands.

Exactly one of -a, -o, or -x must be specified.

-m The last (highest-numbered) input band is used as a
mask. Pixels in this band will first be truncated
or padded to the same number of bits as the other
input bands, then any nonzero pixels will be set to
˜0 (all bits on).

DIAGNOSTICS
single-band input image

The input image must have at least 2 bands.

different # bits / pixel: bands 0, {band}

All input bands must have the same number of bits
per pixel (except the last band, if -m is
specified).

EXAMPLES
To mask a DEM "elev" such that pixels outside the drainage
basin "basin" are set to 0:

mux elev basin | bitcom -a -m

SEE ALSO
IPW: mux

- 38 -

CMPIMG CMPIMG

NAME
cmpimg -- compare two images

SYNOPSIS
cmpimg image1 image2

DESCRIPTION
cmpimg compares the pixel data from {image1} and {image2},
ignoring any headers. A message is printed on the standard
output indicating whether the two input images differ or are
identical.

DIAGNOSTICS
Images "{image1}", "{image2}" are identical

Images "{image1}", "{image1}" differ

FILES
$TMPDIR/cmpimg{NNNNN}

Temporary storage for a headerless copy of {image1}.

EXAMPLES
The following sequence might be used to test a command, such
as transpose, that should be its own inverse:

transpose image | transpose | cmpimg - image

SEE ALSO
IPW: rmhdr

UNIX: cmp

NOTES
cmpimg is currently implemented as a shell script that
invokes the UNIX cmp command. This has the following
consequences:

- Since cmp has no notion of image structure, cmpimg gives
no indication of the logical image locations (line,
sample, band) where differences occur.

- Some implementations of cmp do not allow "-" (standard
input) to be specified for {image2}.

The exit status of cmpimg does NOT indicate the result of
the comparison.

- 39 -

CNHIST CNHIST

NAME
cnhist -- convert IPW histogram to cumulative normalized

text representation

SYNOPSIS
cnhist [begin [end]]

DESCRIPTION
cnhist reads an IPW histogram from the standard input and
writes a cumulative normalized histogram as text on the
standard output.

OPTIONS
begin Begin processing at the input value with this index

number (default: 0). The first {begin} output
values will be 0.

end Cease processing after the input value with this
index number (default: last input value). The last
{last - end} output values will be 1.

EXAMPLES
To view a cumulative histogram of "image":

hist image | cnhist | graph -a | plot

SEE ALSO
IPW: btoa, hist, histeq, rmhdr

UNIX: awk

NOTES
cnhist is currently implemented as a shell script that
invokes the $AWK command to perform the normalization
calculations.

The option syntax is nonstandard.

- 40 -

CONVOLVE CONVOLVE

NAME
convolve -- image convolution

SYNOPSIS
convolve [-i image] [-c coefs]

DESCRIPTION
convolve convolves an input image with a user-supplied
kernel, writing the result to the standard output.

OPTIONS
-i Read image data from {image} (default: standard

input).

-c Read kernel coefficients from {coefs} (default:
standard input). This is a text file, with the
following format:

value description
----- -----------
1 #rows in kernel
2 #columns in kernel
3 coefficient[0][0]
... ...
#cols+2 coefficient[0][#cols-1]
#cols+3 coefficient[1][0]
... ...

Values may be separated by any sequence of blanks,
tabs, and newlines. If the kernel does not sum to
zero, it is normalized to sum to 1.0.

At least one of -i and/or -c must be specified.

- 41 -

CONVOLVE CONVOLVE

DIAGNOSTICS
{rows}x{cols} kernel is bigger than {nlines}x{nsamps} image

The kernel cannot be bigger than the image.

sorry, only single-band input images accepted

The input image may not have more than 1 band.

bad kernel size: {rows}x{cols}

The kernel dimensions must be nonzero positive
integers.

both kernel dimensions must be odd

EXAMPLES
To sharpen an image by adding its Laplacian, reading the
kernel from the standard input:

convolve -i image
3 3
0 -1 0
-1 5 -1
0 -1 0

NOTES
There must be enough virtual memory to accommodate {rows}
output image lines.

The normalization process can cause kernels that differ only
slightly to produce radically different results.

- 42 -

DEMUX DEMUX

NAME
demux -- demultiplex (extract bands from) IPW image

SYNOPSIS
demux -b band[,...] [image]

DESCRIPTION
demux copies the specified bands from {image} (default:
standard input) to the standard output.

OPTIONS
-b Extract the specified bands. The bands will appear

in the output image in the order specified; e.g., if
the input image has 2 bands, then

demux -b 1,0

outputs the same image but with the band order
reversed.

DIAGNOSTICS
{band}: bad input band number

The input image does not contain the specified
band.

"{header}" header, band {band}: no such band

The specified {header} in the input image pertains
to a nonexistent band (i.e., the input image is
corrupted).

EXAMPLES
demux -b 0,1,2 image

creates a 3-band image consisting of the first 3 bands from
"image".

SEE ALSO
IPW: mux

- 43 -

DITHER DITHER

NAME
dither -- create bilevel image using ordered dithering

SYNOPSIS
dither [-r rank] [image]

DESCRIPTION
dither reads multi-bit pixels from {image} (default:
standard input), converts them to single-bit pixels using
ordered dithering, and writes the result to the standard
output. Black (i.e. low-value) output pixels are assigned
the value 0; white (i.e. high-value) output pixels are
assigned the value 1.

OPTIONS
-r Use a dither matrix of rank {rank} (default 4).

Possible values are 4, 8, or 16, for simulating 16,
64, or 256 gray levels, respectively.

EXAMPLES
To display "image" on a monochrome Sun workstation under
SunView:

dither image | sunras | rastool

SEE ALSO
IPW: rastool, sunras

David F. Rogers, "Procedural Elements for Computer
Graphics", McGraw-Hill, 1985, p. 107.

NOTES
Before using dither, make sure that the output device (e.g.,
PostScript printer) or display software (e.g., X) does not
already incorporate a better halftoning algorithm.

- 44 -

EDHDR EDHDR

NAME
edhdr -- edit image header

SYNOPSIS
edhdr image ...

DESCRIPTION
edhdr allows interactive editing of {image}’s headers. The
headers are copied into a scratch text file and the editor
specified in the EDITOR environment variable (default: vi)
is invoked. After the editor exits, the image is
reconstructed with the new headers.

DIAGNOSTICS
standard input and output must be a terminal

The default editor (vi) must be connected to a
terminal device.

image not writable

The input image is also the output image, so it must
be writable.

FILES
{image}.BAK temporary copy of {image}

edhdr{NNNNN} temporary copy of edited header

SEE ALSO
IPW: $IPW/h/*h.h

UNIX: vi (or, documentation for your $EDITOR)

NOTES
THERE IS NO SANITY CHECKING OF THE EDITED HEADER. DON’T USE
THIS PROGRAM UNLESS YOU KNOW WHAT YOU ARE DOING.

The directory in which edhdr is invoked must have enough
free space for a copy of each input image.

- 45 -

EDIMG EDIMG

NAME
edimg -- replace image pixels

SYNOPSIS
edimg [-r] [-k const] [-c coords] [-i image]

DESCRIPTION
edimg copies the input {image} to the standard output,
replacing specified pixel values. Replacement values are
read from the text file {coords}. Each value is represented
as a single line with the format:

line sample constant

indicating that the value of the pixel at location
{line},{sample} is to be replaced with {constant}. If
{constant} is missing, a default value is used.

OPTIONS
-r Use quantized (raw) pixel values: don’t convert

input pixels to floating point (i.e. disregard any
input "lq" headers), and treat replacement constants
as quantized values.

-k Use {const} as the default replacement value
(default: 0)

-c Read replacement values from {coords} (default:
standard input).

-i Read image data from {image} (default: standard
input).

At least one of -c and/or -i must be specified.

DIAGNOSTICS
invalid coordinates: {text}

The {text} line is not a valid replacement value
specification.

unsorted coordinates: {line},{sample}

The coordinates must be sorted in order of
increasing line numbers.

- 46 -

EDIMG EDIMG

EXAMPLES
To set the pixel(s) at (100,200) in "image" to 255:

edimg -r -i image
100 200 255

SEE ALSO
IPW: poly

UNIX: sort

NOTES
If the input image has more than one band, then ALL bands at
a specified location are set to the corresponding
replacement value.

The input {line} and {sample} values are always intrinsic
(raw); that is, unaffected by any coordinate system headers
("geo", "win", etc.) in the input image.

- 47 -

FLIP FLIP

NAME
flip -- flip IPW image

SYNOPSIS
flip [-l] [-s] [image]

DESCRIPTION
flip copies the input {image} (default: standard input) to
the standard output, reversing the order of the lines and/or
samples.

OPTIONS
-l Reverse order of image lines.

-s Reverse order of samples in each line.

At least 1 of -l and/or -s must be specified.

EXAMPLES
An image may rotated in multiples of 90 degrees as follows:

flip -s | transpose # 90 degrees clockwise
flip -l -s # 180
flip -l | transpose # 270

SEE ALSO
IPW: transpose

NOTES
If -l is specified then the input image must fit into
virtual memory.

If the output image does not have the canonical IPW line
(top to bottom) and sample (left to right) order, then it
will be given an orientation ("or") header describing the
non-standard ordering.

- 48 -

GRADIENT GRADIENT

NAME
gradient -- compute slope and aspect

SYNOPSIS
gradient [-s] [-a] [-i sbits[,abits]] [-d dl[,ds]] [image]

DESCRIPTION
gradient computes the slope and aspect (i.e. the magnitude
and direction of the gradient) of each pixel in the input
{image} (default: standard input).

The 2-band output image has slope as its first band and
aspect as its second. Slopes are stored as sin(slope),
quantized over [0..1]. Aspects are stored as radians from
south, quantized over [-pi..pi), with negative values to the
west and positive values to the east.

OPTIONS
-s Compute slopes only (default: slopes and aspects).

-a Compute aspects only (default: slopes and aspects).

-d Set input grid spacing to {dl} (default: obtained
from {image}’s "geo" header, or set to 1 if
otherwise unavailable). If {ds} is specified, use
{dl} for the input line spacing and {ds} for the
input sample spacing.

-i Use {sbits} bits per output pixel (default: 8). If
{abits} is specified, use {sbits} bits per slope
pixel and {abits} bits per aspect pixel.

- 49 -

GRADIENT GRADIENT

DIAGNOSTICS
bits must be >= 1
-d {delta},{delta} : must be positive

The arguments to the -d and -i options must be
positive nonzero integers.

input file has {nbands} bands

The input image must have only 1 band.

Elevation file has no GEOH, spacing set to 1.0
input file has no LQH; raw values used
input units "{units}", should be "m"

These deficiences in the input image will introduce
linear errors into the slope calculations.

Elevation file should be standard orientation

The output azimuth values will have a systematic
bias corresponding to the non-standard orientation
of the input image.

spacing in geodetic header ignored

The -d option overrides any pixel spacing
information in the input image.

SEE ALSO
IPW: demux, mkgeoh, mklqh

NOTES
gradient is optimized for terrain calculations (e.g.,
storing slopes as sines offers increased precision for
shallow slopes, which are more common in nature), and may
therefore be less than ideal as a generic image derivative
program.

- 50 -

GRHIST GRHIST

NAME
grhist -- graph an IPW histogram

SYNOPSIS
grhist [graph-options]

DESCRIPTION
grhist reads an IPW histogram from the standard input, and
writes a graphic rendition of the histogram (using the UNIX
command "graph") on the standard output.

OPTIONS
Any command-line arguments are passed to "graph".

EXAMPLES
To compute and plot a histogram on the default printer:

hist image | grhist | lpr -g

To plot a (precomputed) histogram on a Tektronix 4014:

grhist <histogram | plot -T4014

SEE ALSO
IPW: btoa, hist, rmhdr

UNIX: awk, graph, plot

NOTES
The option syntax (of "graph") is nonstandard.

The current implementation of grhist converts the histogram
to a text stream and preprocesses it with "awk". This is
flexible, but slow.

- 51 -

HIST HIST

NAME
hist -- compute image histogram

SYNOPSIS
hist [-m mask] [image]

DESCRIPTION
hist reads an IPW {image} (default: standard input) and
computes its histogram. The histogram is written to the
standard output as a single-line IPW image, whose sample
offsets represent the pixel values in the input image, and
whose pixel values are frequency counts.

OPTIONS
-m Histogram only those pixels masked by nonzero values

in the {mask} image.

DIAGNOSTICS
different size pixels: bands 0,{band}

All input bands must have the same number of bits
and bytes per pixel. This is because the number of
possible pixel values in the input image governs the
number of samples in the single output line.

mask is not same size as input image

If -m is specified, then {mask} must have the same
number of lines and samples as the input image.

EXAMPLES
Given a DEM "elev" and a drainage basin mask "basin", the
following command will calculate a histogram of the
elevations within the basin:

hist -m basin elev

To generate a single-band histogram and convert it to text
for further processing by non-IPW software:

demux -b {band} | hist | rmhdr | btoa -4

SEE ALSO
IPW: btoa, grhist, histeq, rmhdr

- 52 -

HIST HIST

NOTES
The output histogram has 32-bit pixels. This make it
effectively unreadable by IPW programs that convert their
input values to floating point (e.g., primg), since the
floating-point conversion routine will attempt, and probably
fail, to allocate a 2**32-element lookup table.

hist will eventually be modified so that the output pixel
size in each band is the minimum necessary to accommodate
the largest output value.

- 53 -

HISTEQ HISTEQ

NAME
histeq -- make histogram-equalization look-up table

SYNOPSIS
histeq [-n size] [-o min,max]

[-i min,max] [-f floor] [-c ceil]

DESCRIPTION
histeq reads an IPW histogram from the standard input and
writes an IPW lookup table to the standard output. The
lookup table may applied to the original image (with the IPW
lutx command) to produce an image with a nearly-flat (i.e.
equalized) histogram.

OPTIONS
-n There are {size} elements in the histogram (default:

256).

-i Use only frequencies for pixels between {min} and
{max} in the histogram (default: 0, {size}-1)

-o Output only values between {min} and {max} (default:
0, {size}-1)

-f Have the output lookup table map input values less
than the specified minimum to {floor} (default:
output minimum).

-c Have the output lookup table map input values
greater than the specified maximum to {ceil}
(default: output maximum).

DIAGNOSTICS
bad option causes 0-bit output values
bad option causes {nbytes}-byte output values

These messages indicate that one or more of the
options would have resulted in a lookup table with
pixels outside the permissible size range of 1..32
bits.

- 54 -

HISTEQ HISTEQ

EXAMPLES
To produce a histogram-equalized version of "image":

hist image | histeq | lutx -i image

If "image" has 12-bit pixels, and the output image should
have 8-bit pixels, then replace the histeq command above
with:

histeq -n 4096 -o 0,255

To avoid having extreme values overwhelm the output mapping,
you could exclude them by specifying an input range:

histeq -n 4096 -o 0,255 -i 1,4094

SEE ALSO
IPW: cnhist, hist, lutx

UNIX: awk

Pratt, W. K., "Digital Image Processing", Wiley, New York,
1978, pp 311-318.

NOTES
The histogram is always read from the standard input (i.e.
no histogram file operand is accepted).

The -n option exists only because histeq is currently
implemented as shell script and does not read the
histogram’s header.

- 55 -

HOR1D HOR1D

NAME
hor1d -- compute angles to local horizon along image rows

SYNOPSIS
hor1d [-b] [horizon options] [image]

DESCRIPTION
hor1d reads elevations from {image} (default: standard
input) and writes an image of along-line horizons to the
standard output.

hor1d is almost always invoked indirectly by the horizon
command, which allows horizons to be computed along
arbitrary azimuths.

OPTIONS
All of horizon’s options are recognized by hor1d, plus:

-b Compute backward horizons (default: forward).

The value of the "-a" option is not used by hor1d, but it is
essential for interpreting hor1d’s output, so it is stored
in the header of the output image.

SEE ALSO
IPW: horizon

- 56 -

HORIZON HORIZON

NAME
horizon -- compute angles to local horizon at given azimuth

SYNOPSIS
horizon -a phi [-z zen] [-u cos] [-d delta] [image]

DESCRIPTION
horizon reads elevations from {image} (default: standard
input) and writes (to the standard output) an image whose
pixels encode the local horizon angles in the direction
{azimuth} degrees (-180..180) from south (positive east).
The value of each output pixel is the cosine of the angle
from the zenith to the pixel’s horizon in the forward
(increasing sample coordinates) direction. (Note that this
value is also the sine of the angle from true horizontal to
the pixel’s horizon.)

OPTIONS
-a The direction of forward azimuth (i.e. increasing

samples along a line) is {phi} degrees east of south
(-180..180).

-d The input grid spacing is {delta} (default: from
"geo" header, or 1 if input image has no "geo"
header). Must be >0. The units should be the same
as for the elevations.

The following options change the output from linearly
quantized cosines to a 1-bit mask in which 1’s indicate
horizon angles greater than a specified threshold. They are
typically used to specify a solar zenith angle, the output
being a mask of pixels where the sun is visible.

-u Mask horizon angles with cosines greater than {cos}.

-z Mask horizon angles greater than {zen} degrees
(0..90).

- 57 -

HORIZON HORIZON

DIAGNOSTICS
spacing in geodetic header ignored

A -d option overrides any spacing information in the
image header.

both -u and -z specified, -z over-ridden

If both -u and -z are specified then -z is ignored.

input file has {nbands} bands

The input image must have only 1 band.

only 1 line in input image
only 1 samp in input image

The input image must have at least 2 lines and 2
samples.

input file has no LQH, raw values used
no geodetic header, spacing set to 1.0

These deficiences in the input image will introduce
linear errors into the horizon calculations.

FILES
$TMPDIR/horizon{NNNNN}

temporary command file, removed when horizon exits

EXAMPLES
To compute northwest horizons:

horizon -a -135

To produce a mask of all northwest horizon angles greater
than 45 degrees:

horizon -a -135 -z 45

(i.e., any pixels that would be shadowed by adjacent terrain
at this solar zenith and azimuth will be masked as 0.)

- 58 -

HORIZON HORIZON

SEE ALSO
IPW: hor1d, skew, transpose

Dozier, J., Bruno, J., and P. Downey, "A faster solution to
the horizon problem", Computers & Geosciences, vol.
7, pp. 145-151, 1981.

NOTES
horizon is shell script that skews and/or transposes the
input image to orient its scan lines in the direction
{azimuth}, then calls hor1d to perform the actual horizon
calculations.

- 59 -

INTERP INTERP

NAME
interp -- interpolate between breakpoints

SYNOPSIS
interp

DESCRIPTION
interp copies pairs (X, Y) of text integers from the
standard input to the standard output. If successive Xs
differ by more than +- 1, then the intervening X values are
also printed, along with linearly interpolated integral Ys.

DIAGNOSTICS
input line must have exactly 2 fields

EXAMPLES
The following input:

0 0
8 4

produces the following output:

0 0
1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4

To construct an IPW lookup table linearly mapping 12-bit
pixels into 8-bit pixels:

interp | mklut -i 12 -o 8
0 0
4095 255

SEE ALSO
IPW: interp, mklut

UNIX: awk

NOTES
All Xs and Ys must be integers.

- 60 -

IPW IPW

NAME
ipw -- list IPW commands

SYNOPSIS
ipw

DESCRIPTION
ipw displays a nicely-formatted listing of available IPW
commands.

FILES
$IPW/lib/bins

This file contains a list of directories, relative
to $IPW, that contain executable IPW commands and
scripts. The format of this file is:

name description

The default version of this file is:

bin general-purpose
etc maintenance and support

EXAMPLES
The command:

ipw

produces the following output:

IPW general-purpose commands:

bitcom edhdr histeq lqhx mksath ...
cmpimg edimg hor1d lutx mksunh ...
...

IPW maintenance and support commands:

atob btoa install ipwlint ipwmake ipwman ...
...

--
Type "command -H" for a synopsis of "command".

- 61 -

IPW2HDS IPW2HDS

NAME
ipw2hds -- convert IPW image to HDS sixel format

SYNOPSIS
ipw2hds [image]

DESCRIPTION
ipw2hds reads an IPW {image} (default: standard input) and
writes an equivalent image in HDS sixel format on the
standard output. The output is suitable for display on an
HDS 3200 series terminal without further processing.

DIAGNOSTICS
input image must be single-band

input image must have 1-bit pixels

EXAMPLES
To display "image" on your HDS 3200 terminal:

dither image | ipw2hds

SEE ALSO
IPW: demux, dither

"HDS3200 Programmer’s Reference Manual", Human Designed
Systems, Philadelphia, 1988, # DN-13c4-8802-1.

NOTES
ipw2hds MAY be usable with other sixel-oriented devices
(e.g., DEC printers) -- this has NOT been tested.

- 62 -

IPW2PS IPW2PS

NAME
ipw2ps -- convert IPW image to PostScript

SYNOPSIS
ipw2ps [-r] [-h height] [-w width] [image]

DESCRIPTION
ipw2ps reads an IPW {image} (default: standard input) and
writes a PostScript version of the image to the standard
output.

OPTIONS
-r Rotate the image 90 degrees on output (e.g., to

align the long axis of the image with the long axis
of the PostScript device).

-h The PostScript image should be no more than {height}
inches high (default: 9.5).

-w The PostScript image should be no more than {width}
inches wide (default: 7.0).

Note that -h and -w define a bounding box for the PostScript
image -- they do NOT change the image’s aspect ratio.

DIAGNOSTICS
image height {height} too large (max 11 inches)
image width {width} too large (max 8.5 inches)

The output PostScript image must fit on an 8.5 by 11
sheet of paper.

image height {height} too small
image width {width} too small

{height} and {width} must be greater than 0.

input image must have only 1 band
input image must have only 1 byte per pixel

These are limitations imposed by PostScript’s
"image" operator.

EXAMPLES
To render an image on a PostScript printer:

ipw2ps | lpr -PPostScript

- 63 -

IPW2PS IPW2PS

SEE ALSO
UNIX: lpr

NOTES
Bilevel PostScript output devices use halftone screening to
simulate multiple gray levels. Aliasing will occur as the
pixel density of the output image approaches the halftone
screen frequency.

The 8.5 inch by 11 inch output restriction will be relaxed.

PostScript is a trademark of Adobe Systems, Inc.

- 64 -

IPW2SUN IPW2SUN

NAME
ipw2sun -- convert IPW image to Sun rasterfile

SYNOPSIS
ipw2sun [image]

DESCRIPTION
ipw2sun reads an IPW {image} (default: standard input) and
writes it to the standard output in Sun Microsystems, Inc.’s
"rasterfile" format.

DIAGNOSTICS
input image has {nbands} bands (only 1 allowed)
input image has {nbits}-bit pixels (only 1 or 8 allowed)
input image has {nbytes}-byte pixels (only 1 allowed)

These restrictions are inherent in the (current) Sun
rasterfile format.

EXAMPLES
To display an 8-bit IPW image in a SunView window on a
monochrome display:

dither | ipw2sun | rastool

SEE ALSO
IPW: dither, rastool

rasterfile(5), in "UNIX Interface Reference Manual", part
number 800-1303-04, Sun Microsystems, Inc.

- 65 -

IPW2XIM IPW2XIM

NAME
ipw2xim -- prepare IPW image for X display

SYNOPSIS
ipw2xim [image]

DESCRIPTION
ipw2xim reads an IPW {image} (default: standard input) and
writes its equivalent in "xim" format on the standard
output. An image in xim format may be displayed in an X
window by the xim or xxim commands.

DIAGNOSTICS
image must have 1 band

ipw2xim currently supports only single-band images.

band 0 has more than 256 levels per pixel

The xim format does not support more than 8 bits per
color.

EXAMPLES
To display "image" in an X window:

ipw2xim image | xim

SEE ALSO
IPW: xim

NOTES
xim and xxim automatically requantize their input (e.g., by
dithering) to the resolution the X display device.

ipw2xim should modified to create color xim images. Since the
xim color image format is band sequential, the easiest way to
do this would be to have ipw2xim process 3 single-band input
images:

ipw2xim red green blue

- 66 -

IPWMAN IPWMAN

NAME
ipwman -- generate IPW manual pages from source file header

comments

SYNOPSIS
ipwman command ...
ipwman function ...

DESCRIPTION
ipwman simulates the UNIX "man" command for IPW, by
extracting the header comments from the IPW source files
corresponding to the specified {command}s or library
{function}s, and writing them to the standard output.

Leading "*"s or "#"s are stripped from the header comments.
Each group of header comments associated with a particular
command or function has the following appended:

- the date the source file was last modified

- a form feed (ASCII NP) character

DIAGNOSTICS
No information for:

{command}
...

The specified {command}s either do not exist or have
no appropriate source file comments.

FILES
$IPW/src/*/{command}/main.c
$IPW/src/*/{command}/{command}.sh

These files are searched for command header
comments.

$IPW/src/lib/lib*/{function}.c
$IPW/src/lib/lib*/*/{function}.c

These files are searched for function header
comments.

- 67 -

IPWMAN IPWMAN

EXAMPLES
To print the manual pages for the "gradient" and "shade"
commands:

ipwman gradient shade | pr | lpr

("pr" is used so that the hardcopy will be paginated and
dated.)

SEE ALSO
IPW: ipw

UNIX: lpr, man, pr

NOTES
ipwman’s output is essentially verbatim C source or shell
script comments; no attempt is made to introduce fancy
formatting (multiple fonts, points sizes, etc.).

ipwman will be modified to search user-specified directories
for source files containing header comments.

- 68 -

LINCOM LINCOM

NAME
lincom -- linear combination of bands

SYNOPSIS
lincom [-c coef,...] [-n nbits] [image]

DESCRIPTION
lincom reads a multi-band {image} (default: standard input)
and writes a linear combination of its bands on the standard
output. For each input sample, the corresponding output
sample is:

p[0] * k[0] + ... + p[nbands-1] * k[nbands - 1]

where p is the input pixel value, k is a user-specified
coefficient, and nbands is the number of input bands.

OPTIONS
-c per-band coefficients (default : 1 / nbands). If

only one coefficient is specified, it is applied to
all input bands. Otherwise, the number of
coefficients must be a multiple of nbands. Each
successive group of nbands coefficients will be used
to create a new output band.

-n Use {nbits} bits per output pixel (default: maximum
number of bits per input pixel).

FILES
$TMPDIR/lin{NNNNN} temporary copy of the output image

EXAMPLES
To create an average of all of the input bands:

lincom

To subtract the band 1 from the band 0 of a 2-band image:

lincom -c 1,-1

To create a 2-band output image from a 2-band input image,
in which the first output band is a sum and the second
output band is a difference:

lincom -c .5,.5,1,-1

- 69 -

LINCOM LINCOM

SEE ALSO
IPW: bitcom, mult

NOTES
lincom creates a temporary copy of the output image since it
must make two passes over its output, one to determine the
minima and maxima in each band, and another to quantize it
accordingly.

- 70 -

LQHX LQHX

NAME
lqhx -- transform image values using new headers

SYNOPSIS
lqhx [-h hdrs] [-i image]

DESCRIPTION
lqhx copies {image} to the standard output, requantizing its
pixels according to the quantization parameters of the
{hdrs} image. Specifically, the output bands will have the
same pixel sizes as {hdrs}, and will receive (and be
quantized according to) any corresponding "lq" (linear
quantization) headers in {hdrs}.

OPTIONS
-h Read quantization parameters from {hdrs} (default:

standard input). Pixel size information (number of
bytes, number of bits) is obtained from the BIH
(basic image header). Any "lq" headers in {hdrs}
(there MUST be at least one) are copied to the
output image. Any other headers or image data in
{hdrs} are ignored.

-i Read image data from {image} (default: standard
input).

At least one of -h and/or -i must be specified.

DIAGNOSTICS
new LQH not valid

The {hdrs} file has an invalid "lq" header, or does
not have any "lq" headers.

input image and LQH file have different # bands

The {hdrs} and {image} files must have the same
number of bands.

- 71 -

LQHX LQHX

EXAMPLES
To requantize "image2" to the same pixel sizes and ranges of
values as in "image1":

lqhx -h image1 -i image2

To requantize a single-band "image" such that the input
values 0..1 are distributed over 10 bits:

mkbih -s 1 -l 1 -i 10 -f |
mklqh -m 0,0,1023,1 -f |
lqhx -i image

Note that the -s and -l options are required by mkbih, even
though those header fields are subsequently ignored.

SEE ALSO
IPW: mkbih, mklqh

NOTES
lqhx does not check that the quantization borrowed from
{hdrs} is appropriate for {image}, i.e., that the pixel
values in {image} lie in the ranges specified by the "lq"
headers in {hdrs}. Pixels below (above) the range of output
values will be set to the lowest (highest) output value.

- 72 -

LUTX LUTX

NAME
lutx -- apply lookup table to image

SYNOPSIS
lutx [-l lut] [-i image]

DESCRIPTION
lutx copies the input {image} to the standard output,
transforming its pixel values according the lookup table
{lut}.

A lookup table, like a histogram, is a single-line IPW
image. To transform a pixel from a given band through a
lookup table, the value of the pixel is interpreted as an
image sample coordinate. The appropriate band at that
sample in the lookup table supplies the replacement pixel
value.

OPTIONS
-i Read image from {image} (default: standard input).

-l Read lookup table from {lut} (default: standard
input).

At least one of -i and/or -l must be specified.

DIAGNOSTICS
{n}-element LUT can’t map {nbits}-bit pixels

The number of elements (samples) in the lookup table
must be at least as large as the number of possible
pixel values in any band of the input image.

image and LUT have different # bands

{image} and {lut} must have the same number of
bands.

not a lookup table (# lines > 1)

{lut} must be a 1-line IPW image.

- 73 -

LUTX LUTX

EXAMPLES
To produce a histogram-equalized version of "image":

hist image | histeq | lutx -i image

To convert "image" with 12-bit pixels to 8-bit pixels, with
linear scaling:

interp | mklut -i 12 | lutx -i image
0 0
4095 255

SEE ALSO
IPW: hist, histeq, interp, mklut

NOTES
All input image headers are copied to the output image, even
those (such as "lq" headers) whose contents may be
invalidated by lutx’s arbitrary modifications to the input
pixel values. We see no simple solution to this problem.

- 74 -

MKBIH MKBIH

NAME
mkbih -- make an IPW basic image header

SYNOPSIS
mkbih -l nlines -s nsamps [-b nbands]

[-y nbytes,...] [-i nbits,...] [-a annot,...]
[-f] [data]

DESCRIPTION
mkbih creates an IPW basic image header (BIH) and writes it
to the standard output. The contents of {data} are then
copied to the standard output. mkbih therefore allows an
IPW header to be prepended to image data from a non-IPW
source.

- 75 -

MKBIH MKBIH

OPTIONS
-l The BIH will indicate {nlines} lines per image.

-s The BIH will indicate {nsamps} samples per image
line.

-l and -s must always be specified.

-b The BIH will indicate {nbands} bands per image
sample (default: 1).

-y The BIH will indicate {nbytes} bytes per pixel
(default: 1, or the minimum necessary to accommodate
the specified {nbits}).

-i The BIH will indicate {nbits} bits per pixel
(default: 8, or all bits in the specified {nbits}).

-y and -i may have either 1 or {nbands} arguments. If there
is 1 argument and {nbands} is greater than 1, then the
argument applies to all bands.

-a The BIH will indicate {annot} as the annotation
(i.e. commentary) for each band (default: no
annotation). If {nbands} is greater than 1 and -a
is specified, then it must have exactly {nbands}
arguments.

-f Force header output only; i.e., do not attempt to
copy {data} to the standard output. This allows
creation of a standalone header to which image data
may later be appended, or which may be passed as
control information to another IPW program (e.g.
lqhx).

DIAGNOSTICS
{nbits} won’t fit in {nbytes} bytes

Only the following combinations of {nbytes} and
{nbits} are allowed:

nbytes nbits
1,2,4 1..8
2,4 9..16
4 17..32

input file not allowed with "-f" option

- 76 -

MKBIH MKBIH

EXAMPLES
To prepend an IPW BIH to a 512 line by 512 sample
single-band image with 8-bit pixels:

mkbih -l 512 -s 512 image

To prepend an IPW BIH to a 6000 line by 7000 sample
single-band 8-bit image being read directly from tape:

mkbih -l 6000 -s 7000 -f >image
dd bs=7000 <{tape-device} >>image

Note the use of ">>" to append the image data to the file
containing the standalone header.

SEE ALSO
IPW: lqhx, mk*h, prhdr, rmhdr

UNIX: dd

NOTES
The annotation string may not contain any commas (they will
be interpreted as option argument separators).

- 77 -

MKGEOH MKGEOH

NAME
mkgeoh -- add a geodetic header to an image

SYNOPSIS
mkgeoh -c csys -u units -o u,v -d du,dv

[-f] [-b band,...] [image]

DESCRIPTION
mkgeoh makes an IPW geodetic ("geo") header. {image}
(default: standard input) is then copied to the standard
output with the "geo" header inserted.

OPTIONS
-c The geodetic coordinate system identifier is {csys}

(e.g., "utm").

-u {u}, {v}, {du}, and {dv} are specified in {units}
(e.g., "meters").

-o The coordinates of image line 0 and sample 0 in
{csys} are {u} and {v}, respectively.

-d The distances between adjacent image lines and
samples in {csys} are {du} and {dv}, respectively.

-c, -u, -o, and -d must always be specified.

-f Force header output only; i.e., do not copy any
pixel data from {image} to the standard output.
Note that there must still be at least an input BIH,
and any input headers (except superseded "geo"
headers) will still be copied to the output.

-b The "geo" header will be applied only to the
specified {band}s (default: all).

DIAGNOSTICS
bad band number: {band}

A nonexistent input band was specified with -b.

band {band}: replacing previous GEO header

Band {band} already had a "geo" header, which was
replaced by the newly-created one.

- 78 -

MKGEOH MKGEOH

EXAMPLES
The following command creates a "geo" header appropriate for
a 5-meter grid located in the Sierra Nevada, California:

mkbih -c utm -u meters -o 4051800,349350 -d -5,5

Note the negative line spacing: UTM northings run in the
opposite direction from IPW line numbers.

SEE ALSO
IPW: flip, gradient, hor1d, horizon, mkbih, prhdr, rmhdr,

transpose, viewcalc, window, zoom

NOTES
There are not (yet) any standard identifiers for {csys} and
{units}, although some IPW programs (e.g., gradient) assume
that any {units} beginning with "m" are meters.

- 79 -

MKLQH MKLQH

NAME
mklqh -- add a linear quantization header to an image

SYNOPSIS
mklqh -m in,out[,in,out,...] [-u units] [-i interp]

[-f] [-b band,...] [image]

DESCRIPTION
mklqh makes an IPW linear quantization ("lq") header.
{image} (default: standard input) is then copied to the
standard output with the "lq" header inserted.

OPTIONS
-m Construct a linear mapping between the breakpoints

{in,out},... At least 1 {in,out} pair must be
supplied. The breakpoint pairs 0,0 and 2ˆnbits-1,0
are assumed unless explicitly overridden.

-m must always be specified.

-u The floating-point pixel values are expressed in
units of {units} (e.g., "W mˆ-2 srˆ-1 nmˆ-1")
(default: none; this field is for annotation only).

-i Use {interp} to interpolate floating-point values
between breakpoints (default: "linear"; this is the
only currently supported value).

-f Force header output only; i.e., do not copy any
pixel data from {image} to the standard output.
Note that there must still be at least an input BIH,
and any input headers (except superseded "lq"
headers) will still be copied to the output.

-b The "lq" header will be applied only to the
specified {band}s (default: all).

- 80 -

MKLQH MKLQH

DIAGNOSTICS
bands {band1} and {band2} have different # bits / pixel

All bands to which the "lq" header is applied must
have the same number of bits per pixel.

must specify pixel,fpixel pairs for -m

-m must have an even number of arguments.

no band %d

A nonexistent input band was specified with -b.

replacing band {band} "lq" header

Band {band} already had an "lq" header, which was
replaced by the newly-created one.

EXAMPLES
To construct an "lq" header that will map 8-bit pixels
(0..255) into the floating-point range 0..1:

mklqh -m 255,1

Note that the breakpoint 0,0 is assumed.

To construct an "lq" header that will map 12-bit pixels
(0..4095) into the range 2762..3417:

mklqh -m 0,2762,4095,3417

SEE ALSO
IPW: gradient, hor1d, lincom, lqhx, mkbih, mstats, mult,

prhdr, rmhdr, shade, viewcalc, wedge

NOTES
There are not (yet) any standard identifiers for {units}.

The default breakpoints can lead to unexpected quantization
mappings or errors from mklqh. For example, the mapping

mklqh -m 0,0,127,1

succeeds for 7-bit pixels, but for 8-bit pixels there would
be an additional implicit breakpoint at 255,0, which would
make the mapping non-monotonic.

- 81 -

MKLUT MKLUT

NAME
mklut -- make look-up table

SYNOPSIS
mklut [-i ibits] [-o obits] [-k bkgd]

DESCRIPTION
mklut creates an IPW lookup table and writes it to the
standard output. The lookup table is loaded with text
values read from the standard input. Each line of input
must have the form:

in out

mklut sets the {in}’th element (0-relative) of the lookup
table to {out}. The input lines must be sorted so that the
{in} values are in numerically ascending order.

OPTIONS
-i {ibits} bits per input value (default: 8). The

output lookup table will contain 2ˆ{ibits} entries.

-o {obits} bits per output value (default: 8). The
output lookup table will contain {obits}-bit
pixels.

-k Initialize the lookup table to {bkgd} (default: 0).

-i, -o, and -k must all have positive nonzero integer
arguments.

DIAGNOSTICS
{ibits}: too many bits per input pixel

A 2ˆ{ibits}-entry lookup table won’t fit in memory.

EXAMPLES
The following pipeline will convert 12-bit pixels to 8-bit
pixels, with linear scaling:

interp | mklut -i 12 | lutx -i in_image > out_image
0 0
4095 255

- 82 -

MKLUT MKLUT

SEE ALSO
IPW: interp, lutx

UNIX: sort

NOTES
mklut currently will create only single-band LUTs.

- 83 -

MKSATH MKSATH

NAME
mksath -- add a satellite header to an image

SYNOPSIS
mksath [-p platform] [-s sensor] [-l location]

[-t yr,mon,day[,hr[,min[,sec]]]]
[-f] [-b band,...] [image]

DESCRIPTION
mkgeoh makes an IPW satellite ("sat") header. {image}
(default: standard input) is then copied to the standard
output with the "sat" header inserted.

OPTIONS
-s The image data were acquired by {sensor} (e.g.,

"TM", "AVIRIS", "ASAS", etc.).

-p {sensor} was mounted on {platform} (e.g.,
"Landsat-5", "ER-2", "C-130", etc.).

-l The image data were acquired at or over {location}.
This should NOT be a geodetic specification (use
mkgeoh), but a sensor-, platform-, or project-
specific identifier (e.g., experimental site name,
Landsat path/row, etc.).

-t The image data were acquired on date
{yr}/{mon}/{day} at time {hr}:{min}:{sec.s...} GMT.
{yr} must be fully specified (i.e. 90 means 90 A.D.,
not 1990). {hr} is 24-hour time.

At least 1 of -p, -s, -l, and/or -t must be specified.

-f Force header output only; i.e., do not copy any
pixel data from {image} to the standard output.
Note that there must still be at least an input BIH,
and any input headers (except superseded "sat"
headers) will still be copied to the standard
output.

-b The "sat" header will be applied only to the
specified {band}s (default: all).

- 84 -

MKSATH MKSATH

DIAGNOSTICS
bad band number: {band}

A nonexistent input band was specified with -b.

band {band}: replacing previous "sat" header

Band {band} already had a "sat" header, which was
replaced by the newly-created one.

EXAMPLES

SEE ALSO
IPW: mkbih, prhdr, rmhdr, tmpt

NOTES
There are not (yet) any standard identifiers for {sensor},
{platform}, or {location}. The {date} and {time} formats
are recommended but not enforced.

- 85 -

MKSUNH MKSUNH

NAME
mksunh -- add a solar position header to an image

SYNOPSIS
mksunh -z cosz -a azm [-f] [image]

DESCRIPTION
mksunh makes an IPW solar position ("sun") header. {image}
(default: standard input) is then copied to the standard
output with the "sun" header inserted.

OPTIONS
-z {cosz} is the cosine of the solar zenith angle.

-a {azm} is the solar azimuth in radians from south,
positive east.

-z and -a must always be specified.

-f Force header output only; i.e., do not copy any
pixel data from {image} to the standard output.
Note that there must still be at least an input BIH,
and any input headers (except superseded "sun"
headers) will still be copied to the standard
output.

EXAMPLES
The following generates a "sun" header for a Landsat image
acquired with a solar elevation of 57 degrees and a solar
compass bearing of 119 degrees:

mksunh -z 0.838671 -a 1.064651 image

where 0.838671 = cos(90 - 57)
and 1.064651 = (180 - 119) * (PI / 180)

SEE ALSO
IPW: mkbih, prhdr, rmhdr

NOTES
The "sun" header will always be applied to ALL bands of the
input image.

mksunh should be a little more forgiving about the angular
units that it accepts ...

- 86 -

MKWINH MKWINH

NAME
mkwinh -- add a window header to an image

SYNOPSIS
mkwinh [-b line,samp] [-d dl,ds] [-f] [image]

DESCRIPTION
mkwinh makes an IPW window ("win") header. {image}
(default: standard input) is then copied to the standard
output with the "win" header inserted.

OPTIONS
-b {line},{samp} are the window coordinates of line 0

and sample 0 in the input image (default: 0, 0).

-d {dl,ds} are the window line and sample spacings in
the input image (default: 1, 1).

-f Force header output only; i.e., do not copy any
pixel data from {image} to the standard output.
Note that there must still be at least an input BIH,
and any input headers (except superseded "win"
headers) will still be copied to the standard
output.

EXAMPLES
To add a window header indicating that the window (line,
sample) coordinates of the image origin are (7, 5):

mkwinh -b 7,5

SEE ALSO
IPW: flip, mkbih, prhdr, rmhdr, transpose, window, zoom

NOTES
The "win" header will always be applied to ALL bands of the
input image.

- 87 -

MSTATS MSTATS

NAME
mstats -- image multivariate statistics

SYNOPSIS
mstats [-c classes] image

DESCRIPTION
mstats computes the basic multivariate statistics (per band
means and variances and interband covariances) for the input
{image} (default: standard input). The statistics are
written as text on the standard output, in the following
format:

#<stats>

nbands

mean mean ...

variance
covariance variance
...

* class

nsamps

"#<stats>" is a magic cookie that introduces each set of
statistics.

{nbands} is the number of bands in the input image.

The {mean}s are the mean pixel values of each input band.

The {variance}s and {covariance}s are the lower triangle of
the variance-covariance matrix, with the variance of band i
at (i, i) and the covariance of bands i and j at (i, j).

{class} (always preceded by "*") is the class number for
which this set of statistics was computed.

{nsamps} is the number of input samples in {class}.

- 88 -

MSTATS MSTATS

OPTIONS
-c Read classes from {classes} image. This must be a

single-band image with the same dimensions as the
input image. A separate set of statistics is
accumulated and output for each unique pixel value
in the class image. The pixel at (line, sample) in
the input image is assigned to the class of the
pixel at (line, sample) in the class image.

If -c is not specified then all input pixels are reported as
being in class "0".

EXAMPLES
If "image" is a multiband satellite image, and "basin" is a
registered mask of a drainage basin, then

mstats -c basin image

will compute the separate multivariate statistics for areas
inside and outside the basin.

SEE ALSO
IPW: demux, edimg, hist, mux, rmhdr

NOTES
mstats will always use any linear quantization ("lq")
headers in the input image to transform the input values.
If statistics for the quantized (raw) pixel values are
desired, then any "lq" headers must be removed from the
input image before it is passed to mstats.

Computing variances involves accumulating a sum of squares
of all input values. The larger the input image, the more
likely that the output variances and covariances will
contain rounding errors.

means and (co-)variances will be printed with the maximum
precision supported by the host architecture; the low-order
digits should probably be ignored.

There is considerable overlap between mstats and hist; they
may be integrated someday.

- 89 -

MULT MULT

NAME
mult -- multiply or divide bands

SYNOPSIS
mult [-n nbits] [-r bands,...] [image]

DESCRIPTION
mult reads a multi-band {image} (default: standard input)
and writes the product of its bands on the standard output.
For each input sample, the corresponding output sample is:

p[0] * p[1] * ... * p[nbands-1]

where {p} is the input pixel value and {nbands} is the
number of input bands.

OPTIONS
-r Use the reciprocal of the pixel value in the

specified {band}s. To avoid division by 0, any 0
values in the specified {band}s will be set to 1.

-n Use {nbits} bits per output pixel (default: maximum
number of bits per input pixel).

DIAGNOSTICS
-r {band}: not that many bands

A nonexistent input band was specified with -r.

Image must have more than one band.

FILES
$TMPDIR/mult{NNNNNN} temporary copy of the output image

EXAMPLES
To multiply two single-band images together:

mux image1 image2 | mult

To divide the first band of a 2-band image by the second
band:

mult -r 1

SEE ALSO
IPW: demux, mux, lincom

- 90 -

MULT MULT

NOTES
mult creates a temporary copy of the output image since it
must make two passes over its output, one to determine the
minima and maxima in each band, and another to quantize it
accordingly.

- 91 -

MUX MUX

NAME
mux -- band-interleave images

SYNOPSIS
mux image ...

DESCRIPTION
mux combines 1 or more input {image}s into a single output
image that contains all of the input bands:

input bands output bands

image1: 0..n1 0..n1
image2: 0..n2 n1+1..n1+n2

... etc. ...

DIAGNOSTICS
image size differs from 1st image

All input images must have the same number of lines
and samples.

FILES
$TMPDIR/mux{NNNNNN} temporary copy of all input headers

EXAMPLES
To combine "red", "green", and "blue" images into a single
"color" image:

mux red green blue >color

SEE ALSO
IPW: demux

NOTES
The maximum number of input images is limited by the number
of files that a program may have open simultaneously. This
limit can be worked around by piping one mux into another.

mux image1 ... imageN | mux - imageN+1 ...

- 92 -

POLY POLY

NAME
poly -- digitize vectors and fill polygons

SYNOPSIS
poly [-s x,y] [file]

DESCRIPTION
poly reads a list of vector vertices from the text {file}
and writes the digitized vectors to the standard output.

The input is a list of integer (x, y) coordinates, one pair
per line:

x0 y0
x1 y1
... etc. ...

The output is a similar list, including all points that
would lie on a line between each successive input coordinate
pair.

OPTIONS
-s Fill the input polygon. The input coordinates must

be the vertices of a closed polygon, (i.e. the last
coordinate pair must be the same as the first), and
the specified ({x}, {y}) must be inside the
polygon. The output will contain all points inside
the polygon, as well as all points on the polygon’s
boundary.

- 93 -

POLY POLY

EXAMPLES
The following command:

poly
0 0
3 3

yields:

0 0
1 1
2 2
3 3

If "roi" contains the corners (in intrinsic line and sample
coordinates) of a region-of-interest then the following
command will inscribe the boundaries of the region onto
"image":

poly roi | edimg -i image

SEE ALSO
IPW: edimg

NOTES
The output coordinates appear in order of increasing (x, y),
regardless of the order of the input coordinates.

Output coordinates on polygon edges are generated by a
Bresenham algorithm. If -s is specified, then output
coordinates inside a polygon are generated by a flood-fill
algorithm, using ({x}, {y}) as a seed location.

- 94 -

PRHDR PRHDR

NAME
prhdr -- print IPW image headers

SYNOPSIS
prhdr [image ...]

DESCRIPTION
prhdr copies the IPW headers of the input {image}s (default:
standard input) to the standard output. If more than one
{image} is specified, then each group of output headers will
be preceded by:

::::::::::::::
{image}
::::::::::::::

EXAMPLES
The command:

prhdr image

might produce the following output:

!<header> basic_image_i -1 $Revision: 1.8 $
byteorder = 3210
nlines = 480
nsamps = 640
nbands = 1
!<header> basic_image 0 $Revision: 1.8 $
bytes = 1
bits = 8
!<header> image -1 $Revision: 1.4 $

SEE ALSO
IPW: mk*h, rmhdr

UNIX: more, sed

NOTES
IPW headers are printable text and are always separated from
the image data by a form feed (ASCII NP) character. You can
therefore view the header of any IPW image directly with a
pagination command such as "more" that pauses when it
encounters a form feed.

- 95 -

PRIMG PRIMG

NAME
primg -- print image pixel values as text

SYNOPSIS
primg [-a] [-r] [-c coords] [-i image]

DESCRIPTION
primg prints input image pixels as text on the standard
output. Each sample is printed on a separate line. The
pixel values for each band are printed in band order from
left to right, separated by white space.

OPTIONS
-a Print all pixels in image (default: print only

pixels specified in {coords}).

-c Read pixel coordinates from {coords} (default:
standard input).

At most one of -a or -c may be specified.

-i Read image data from {image} (default: standard
input).

At least one of -a, -c, and/or -i must be specified.

-r print quantized (raw) pixel values, bypassing any
conversion to floating-point (e.g. via input "lq"
headers).

DIAGNOSTICS
bad coordinate file line: {text}

{coords} contains a line {text} than cannot be
parsed as two non-negative integers.

bad coordinates (not on image): {line},{sample}

{line},{sample} are illegal coordinates for the
input image.

unsorted coordinates: {line},{sample}

The input coordinates must be sorted in ascending
line order (sample order is unimportant).

- 96 -

PRIMG PRIMG

EXAMPLES
To interactively examine pixel value in "image", type the
command:

primg -i img

then type the pixel coordinates on the standard input (but
remember, the coordinates must be typed in increasing line
order).

If "basin" contains the (line, sample) coordinates of the
corners of a drainage basin in the DEM "dem", and
{line},{samp} are the coordinates of an arbitrary point
within the drainage basin, then:

poly -s {line},{samp} basin | primg -i dem

will print all of the pixel value in "dem" that lie within
the drainage basin.

SEE ALSO
IPW: poly

UNIX: sort

NOTES
-a without -r can be very slow.

primg should allow pixel coordinates to be specified with
reference to window ("win") or geodetic ("geo") headers in
the input image.

- 97 -

RANDOM RANDOM

NAME
random -- generate random numbers

SYNOPSIS
random -n nlines -r min,max[,...] [-p prec] [-s seed]

DESCRIPTION
random prints random numbers as text on the standard
output.

OPTIONS
-n Print {nlines} lines of output.

-r Output values will occupy the range {min} to {max}
inclusive. Each {min},{max} pair controls an output
column.

-n and -r must always be specified

-p Print output values using {prec} digits of precision
(default: 0, meaning discard any fractional part).

-s Initialize the random number generator with {seed}
(default: obtain seed from system clock). This
option can be used to obtain the same output from
multiple invocations of random.

DIAGNOSTICS
of values must be > 0

-n was specified wit h a 0 or negative {nlines}.

range(s) must be specified by min,max pairs

-r was specified with an odd number of arguments.

output precision must be >= 0

-p was specified with a negative {prec}

- 98 -

RANDOM RANDOM

EXAMPLES
The command:

random -n 5 -r 0,10,0,10

might yield:

7 1
5 8
7 2
1 8
0 2

To obtain the values of 100 randomly selected pixels from a
512 line by 512 sample "image":

random -n 100 -r 0,511,0,511 |
sort -n |
primg -i image

Note that the random coordinates must be sorted before being
passed to primg.

SEE ALSO
IPW: primg

UNIX: random, sort

NOTES
random uses the random(3) functions from 4.3BSD UNIX. The
source for these functions is normally included with IPW.

- 99 -

RASTOOL RASTOOL

NAME
rastool -- display a Sun rasterfile in a SunView window

SYNOPSIS
rastool [-b line,samp] [-c line,samp] [-e line,samp]

[-n nlines,nsamps] [rasterfile]

DESCRIPTION
rastool displays the Sun rasterfile {rasterfile} (default:
standard input) in a SunView window. {rasterfile} may be
monochrome (ras_maptype = RMT_NONE), or it may possess an
RGB color table (ras_maptype = RMT_EQUAL_RGB).
{rasterfile}’s type must be RT_STANDARD; no encoded formats
are currently supported, to allow disk scrolling of images.
If {rasterfile} is read from the standard input, then it
must be small enough to scroll in memory.

OPTIONS
-b Display a subimage of {rasterfile} beginning at

({line}, {samp}).

-c Display a subimage of {rasterfile} centered at
({line}, {samp}).

-e Display a subimage of {rasterfile} ending at
({line}, {samp}).

-n Display an {nlines} lines by {nsamps} samples
subimage of {rasterfile}.

No more than two of -b, -c, -e, and/or -n may be specified.

DIAGNOSTICS
Bad subimage definition

The window specified by the -b, -c, -e, and/or -n
options is not a proper subset of {rasterfile}.

EXAMPLES
To display a single-band IPW image on a monochrome display
running SunView:

dither | sunras | rastool

SEE ALSO
IPW: sunras, window

- 100 -

RASTOOL RASTOOL

NOTES
rastool was written by Jud Harward, Center for Remote
Sensing, Boston University

rastool does not yet support disk scrolling.

- 101 -

RMHDR RMHDR

NAME
rmhdr -- delete image headers

SYNOPSIS
rmhdr [-d header,...] [image]

DESCRIPTION
rmhdr reads an an IPW {image} (default: standard input) and
writes only the image data to the standard output.

OPTIONS
-d Delete only the specified {header}s (default: all).

{header} should be the name of the header EXACTLY as
it appears in the header itself (e.g. "lq" for a
linear quantization header). Nonspecified headers
are copied to the standard output.

EXAMPLES
For a single-band image with {nbytes} bytes per pixel,

rmhdr | btoa -{nbytes}

would be equivalent to

primg -r -a

To delete the the "lq" header from an image before running
mstats (so the statistics will be computed for the quantized
pixel values):

rmhdr -d lq | mstats

SEE ALSO
IPW: btoa, mk*h, prhdr

NOTES
The default output of rmhdr is NOT a valid IPW image, since
it has no BIH (nor any other header). However, if -d is
specified, then rmhdr’s output IS a valid IPW image, UNLESS
"basic_image" or "basic_image_i" are explicitly specified as
{header} arguments. Some may find this confusing ...

For the header names that will be recognized by the -d
option, see the {header}H_HNAME macro definition in
$IPW/h/{header}h.h.

- 102 -

SHADE SHADE

NAME
shade -- calculate cosine of local illumination angle

SYNOPSIS
shade [-z zenith] [-u cos] -a azimuth [image]

DESCRIPTION
shade read a 2-band slope and aspect image (i.e. output from
gradient) from {image} (default: standard input), and writes
an image of local illumination cosines (relative to a
specified solar position) to the standard output.

OPTIONS
-z The solar zenith angle is {zen} [0..90) degrees.

-u The cosine of the solar zenith angle is {cos}
(0..1].

At least one of -z or -u must be specified. If both are
specified, then -z is ignored.

-a The solar azimuth is {azm} degrees (-180..180) from
south (positive east, negative west).

DIAGNOSTICS
input file has no LQH

An "lq" header is necessary to convert the quantized
slopes and aspects to their actual values.

band 0 of input not slope

The range of floating-point values in band 0 is
inappropriate for quantized slopes. shade will
continue executing, but the output values will
almost certainly be bogus.

EXAMPLES
To compute a nice-looking shaded-relief map from a DEM (i.e.
one with the sun in the cartographically traditional, but,
for the northern hemisphere, physically impossible position
of 45 degrees above the northwest horizon):

gradient | shade -z 45 -a -135

- 103 -

SHADE SHADE

SEE ALSO
IPW: gradient

Dozier, Jeff, and James Frew, "Rapid Calculation of Terrain
Parameters for Radiation Modeling from Digital
Elevation Data", in "IGARSS ’89 12th Canadian
Symposium on Remote Sensing", vol. 3, pp. 1769-1774,
1989.

NOTES

- 104 -

SKEW SKEW

NAME
skew -- skew image lines

SYNOPSIS
skew [-a angle] [-h] [image]

DESCRIPTION
Skew copies {image} (default: standard input) to the
standard output, skewing the origin of successive lines by a
specified angle.

OPTIONS
-a Skew lines through {angle} degrees (-45..45). The

left edge of the output version of {image} will be
tilted {angle} degrees clockwise from vertical. The
resulting dead space in the output image is filled
with 0-valued pixels.

-h Ignore any skew header in the input image.

If -a IS specified, then the input image must NOT contain a
skew ("skew") header (unless -h is specified), and a "skew"
header is written to the output image.

If -a is NOT specified, then the input image MUST contain a
"skew" header. The skew indicated by this header removed
from the output image, and NO "skew" header is written to
the output image.

DIAGNOSTICS
image is already skewed

-a was specified, and the input image contains a
"skew" header.

image is not skewed

-a was not specified, and the input image does not
contain a "skew" header.

band {band} has no skew header
different skew angles: bands 0, {band}

If -a is not specified, then all input bands must
have the same "skew" header

FILES
$TMPDIR/skew{NNNNNN} temporary copy of all input headers

- 105 -

SKEW SKEW

EXAMPLES
The command

skew -a 30

causes the following transformation:

+-----------+ +---------------+
		000/ /
input		00/ output /0
image		0/ image /00
		/ /000
+-----------+ +---------------+

SEE ALSO
IPW: flip, horizon, transpose, viewf

NOTES
skew may be used in conjunction with flip and transpose to
reorient an image’s scan lines at an arbitrary angle with
respect to the original scan lines.

- 106 -

SUNANG SUNANG

NAME
sunang -- calculate sun angles

SYNOPSIS
sunang -t yr,mon,day,hr[,min[,sec]] [-z min] [-y]

-b deg[,min[,sec] -l deg[,min[,sec]]
[-s slope] [-a azm] [-r] [-d]

DESCRIPTION
sunang calculates the sun angle (the azimuth and zenith
angles of the sun’s position) for a given date, time, and
geodetic location. The sun angle is written to the standard
output in the format:

GMT {weekday} {month} {day} {hr}:{min}:{dec} {year}
-z {degrees} -u {cos(z)} -a {degrees}

The first line contains the date and time. The second line
contains the zenith angle, the cosine of the zenith angle,
and the solar azimuth. The second line is suitable for
direct substitution into the command lines of several other
IPW programs (horizon, shade, etc.).

- 107 -

SUNANG SUNANG

OPTIONS
-t Calculate sun angle on date {yr}/{mon}/{day} at time

{hr}:{min}:{sec} GMT. {yr} must be fully specified
(i.e. 90 means 90 A.D., not 1990). {hr} is 24-hour
time.

-b Calculate sun angle at latitude {deg},{min},{sec}.
South latitudes are negative.

-l Calculate sun angle at longitude {deg},{min},{sec}.
West longitudes are negative.

-t, -b, and -l must always be specified. {min} and {sec}
default to 0 if not specified.

-s Calculate sun angle for a surface with a slope of
{deg} (0..90) degrees (default: 0).

-a Calculate sun angle for a surface with an azimuth of
{deg} (-180..180) degrees (default: 0).

-r All angles are specified in radians (default:
degrees, minutes, seconds for -b and -l; decimal
degrees for -s and -a).

-z Use a time zone {min} west of Greenwich (default: 0)
for the time specified with the -t option.

-y Use daylight savings time (default: standard time)
for the time specified with the -t option.

-d Print earth-sun radius vector in addition to sun
angle.

- 108 -

SUNANG SUNANG

EXAMPLES
To calculate the sun angle in Santa Barbara on 15 February
1990 at 12:30 PM Pacific Standard Time:

sunang -b 34,25 -l -119,54 -t 1990,2,15,12,30 -z 480

The output would be:

GMT Thu Feb 15 20:30:00 1990
-z 47.122 -u 0.680436 -a -5.413

Given a DEM image for the Santa Barbara area, the following
could be used to generate an index of local beam irradiance
(discounting atmospheric effects):

gradient {dem} |
shade ‘sunang {options as above} | tail -1‘

SEE ALSO
IPW: gradient, hor1d, horizon, shade

UNIX: tail

Wilson, W. H., "Solar ephemeris algorithm", Reference 80-13,
70 pp., Scripps Institution of Oceanography,
University of California at San Diego, La Jolla, CA,
1980.

NOTES
-r does NOT change the output representations of zenith and
azimuth; they are always printed as decimal degrees.

-b and -l should accept decimal degrees as well as radians
and degrees,minutes,seconds.

- 109 -

TRANSPOSE TRANSPOSE

NAME
transpose -- transpose an image

SYNOPSIS
transpose [image]

DESCRIPTION
transpose reads {image} (default: standard input) and writes
its transpose on the standard output. Geodetic ("geo") and
window ("win") headers will be adjusted appropriately. An
orientation ("or") header will be written if the orientation
of the output image is non-standard.

DIAGNOSTICS
output image won’t fit in memory

The entire image must fit into (virtual) memory.

EXAMPLES
To rotate an image 90 degrees clockwise:

flip -s | transpose

SEE ALSO
IPW: flip, skew

NOTES
The in-memory transpose algorithm is quite fast, but it does
limit the size of the image that can be transposed.

- 110 -

VIEWCALC VIEWCALC

NAME
viewcalc -- compute sky view and terrain configuration

factors

SYNOPSIS
viewcalc [-s gradient] [-h horizons]

DESCRIPTION
viewcalc reads a gradient image (calculated by "gradient")
and a horizon angle image (calculated by "horizon") and
writes a 2-band image of the corresponding sky view and
terrain configuration factors to the standard output.

The input horizon angle image should be multiband, with each
band representing the horizon in one of {nbands}
equiangularly spaced directions (i.e., the result of
"mux"ing together several output images from "horizon").

Band 0 of the output image is the sky view factor, defined
as the fraction (0..1) of a pixel’s overlying hemisphere
(centered at the pixel’s zenith) that is subtended by sky
(as opposed to surrounding terrain).

Band 1 of the output image is the terrain configuration
factor. defined as:

1 + cos(slope)
-------------- - sky view factor

2

OPTIONS
-s Read slopes and aspects from {gradient} (default:

standard input).

-h Read horizon angles from {horizons} (default:
standard input).

At least one of -s and/or -h must be specified.

- 111 -

VIEWCALC VIEWCALC

DIAGNOSTICS
samples different in two input files
files unequal # pixels

The gradient and horizon angle images must have the
same number of lines and samples.

band 0 of input not slope
input slope/azimuth file must have 2 bands
slope/azm image has no LQH

The gradient image must be a valid output from the
gradient program.

horizon image has no HORH
horizon image has no LQH

The horizon image must be composed of valid outputs
from the horizon program.

EXAMPLES
viewcalc is almost always invoked by viewf, which first
calculates the necessary gradient and horizon images.

SEE ALSO
IPW: gradient, hor1d, horizon, viewf

Dozier, Jeff, and James Frew, "Rapid Calculation of Terrain
Parameters for Radiation Modeling from Digital
Elevation Data", in "IGARSS ’89 12th Canadian
Symposium on Remote Sensing", vol. 3, pp. 1769-1774,
1989.

- 112 -

VIEWF VIEWF

NAME
viewf -- compute sky view and terrain configuration factors

directly from elevation image

SYNOPSIS
viewf image

DESCRIPTION
viewf reads elevation data from {image} (default: standard
input) and writes the corresponding sky view and terrain
configuration factors to the standard output.

viewf is a script that invokes gradient and hor1d to
calculate the necessary gradient and (16) equiangularly
spaced horizon images, which are then passed to viewcalc.

DIAGNOSTICS
(see: gradient, hor1d, mux, skew, transpose, viewcalc)

FILES
$TMPDIR/viewf.{NNNNNN}/*

temporary directory containing intermediate gradient
and horizon files.

$TMPDIR/mux{NNNNNN} (mux temporary file)
$TMPDIR/skew{NNNNNN} (skew temporary file)

EXAMPLES
The command:

viewf image

is equivalent to:

gradient image >{grad}
horizon -a {azm01} image >{horz01}
...
horizon -a {azm16} image >{horz16}
mux {horz??} | viewcalc -s {grad}

SEE ALSO
IPW: gradient, hor1d, mux, skew, transpose, viewcalc

- 113 -

VIEWF VIEWF

NOTES
The use of 16 horizon images is hard-coded in viewf. In
practice this has proven to yield sufficient resolution even
in very rugged terrain.

- 114 -

WEDGE WEDGE

NAME
wedge -- linear combination of line and sample coordinates

SYNOPSIS
wedge -c lcoef,scoef[,...] [-n nbits] [image]

DESCRIPTION
wedge reads the headers from {image} (default: standard
input) and writes an image with the same number of lines and
samples to the standard output. The value of each output
pixel is a linear combination of the pixel’s raw line and
sample coordinates.

OPTIONS
-c Output pixels are assigned the value:

line * {lcoef} + sample * {scoef}

Each pair of {lcoef},{scoef} will be used to
generate a new output band.

-n Use {nbits} bits per output pixel (default:
log2(max(nlines,nsamps)), where {nlines} and
{nsamps} are the dimensions of {image}).

DIAGNOSTICS
must specify an even number of coefficients

-c must have an even number of arguments

band {band}: both coefficients cannot be 0

EXAMPLES
To produce a 512 by 512 single-band diagonal wedge with
8-bit pixels increasing in intensity from the upper left
corner:

mkbih -l 512 -s 512 -f | wedge -c 1,1 -n 8

Note that the input image can be a standalone BIH since only
the header is required.

To produce an 8-bit image with 2 wedge channels, the first
increasing horizontally, and the second decreasing
horizontally, sized to match an existing "image":

wedge -c 0,1,0,-1 -n 8 image

- 115 -

WEDGE WEDGE

SEE ALSO
IPW: mkbih

NOTES
Any optional headers, other than "lq" headers, will be
copied from the input image to the corresponding bands of
the output image.

- 116 -

WINDOW WINDOW

NAME
window -- extract image window

SYNOPSIS
window [-b line,samp] [-c line,samp] [-e line,samp]

[-n nlines,nsamps] [-w band] [-g band] [image]

DESCRIPTION
window reads an image from {image} (default: standard input)
and writes a specified window (i.e., subimage) to the
standard output.

- 117 -

WINDOW WINDOW

OPTIONS
-b The beginning (i.e. upper-left corner) of the window

is ({line}, {samp}).

If ONLY -b is specified, then the window extends
diagonally from ({line}, {samp}) to the last sample
on the last line of the input image.

-c The center of the window is ({line}, {samp}). The
center of an even number of lines or samples is the
larger of the two possible values; e.g., the center
line of lines 0..511 is 256, not 255.

If ONLY -c is specified, then the window is largest
possible odd number of input lines and samples
centered on ({line}, {samp}).

-e The end (i.e. lower-right corner) of the window is
({line}, {samp}).

If ONLY -e is specified, then the window extends
diagonally from the first sample on the first line
of the input image, to ({line}, {samp}).

-n The window has {nlines} lines and {nsamps} samples
per line.

If ONLY -n is specified, then the window begins at
the first sample of the first line of the input
image.

At least one, and no more than two, of of -b, -c, -e or -n
must be specified.

-w The arguments to -b, -c, and/or -e are specified in
the coordinates of band {band}’s window ("win")
header.

-g The arguments to -b, -c, and/or -e are specified in
the coordinates of band {band}’s geodetic ("geo")
header.

At most one of -w or -g may be specified.

- 118 -

WINDOW WINDOW

DIAGNOSTICS
specified window exceeds boundaries of input image

Windows are not clipped to fit the input image; the
specification must be correct to start with.

no geodetic header for band {band}
no window header for band {band}

-g or -w was specified and there was no
corresponding header for the specified input band.

FILES
$TMPDIR/windo{NNNNNN} temporary copy of all input headers

EXAMPLES
To produce a 2x enlargement of the center of a 512x512
image:

window -c 256,256 -n 256,256 | zoom -l 2 -s 2

To extrac t a 1 km by 1 km window from a 5-meter DEM,
beginning at UTM northing 4051800 and easting 349350:

window -g 0 -b 4051800,349350 -e 4050805,350345

SEE ALSO
IPW: mkgeoh, mkwinh, zoom

NOTES
Input "win" and "geo" headers are transformed correctly;
other input headers are copied verbatim to the output
image.

- 119 -

ZOOM ZOOM

NAME
zoom -- zoom image by pixel replication or subsampling

SYNOPSIS
zoom [-l zline] [-s zsamp] [image]

DESCRIPTION
zoom reads {image} (default: standard input) and writes a
copy to the standard output, with lines and/or samples
either replicated or skipped. Any geodetic ("geo") or
window ("win") headers are adjusted as necessary.

OPTIONS
-l Replicate each line {zline} times. If {zline} is

negative, then select every {zline}’th line,
beginning with line 0.

-s Replicate each sample {zsamp} times. If {zsamp} is
negative, then select every {zsamp}’th sample,
beginning with sample 0, from each selected line.

At least 1 of -l and/or -s must be specified.

DIAGNOSTICS
line zoom factor must be non-zero
sample zoom factor must be non-zero

Zoom factors must be nonzero integers.

- 120 -

ZOOM ZOOM

EXAMPLES
To zoom an image by a factor of 2 in both directions:

zoom -s 2 -l 2

To histogram every 10th pixel of a large image:

zoom -s -10 -l -10 | hist

Zooming by non-integer factors is accomplished by expressing
the desired zoom factor as a fraction, and then using the
pipeline:

zoom -{direction} {numerator} |
zoom -{direction} -{denominator}

For example, to shrink an image by 3/4 horizontally (perhaps
to accommodate a display with a 4:3 aspect ratio):

zoom - s 3 | zoom -s -4

SEE ALSO
IPW: window

NOTES
The fractional-zoom pipeline should specified in the order
shown (replication before subsampling). Reversing the order
(subsampling before replication) may be faster, but results
in much greater loss of spatial resolution.

- 121 -

CHAPTER 6: THE PROGRAMMER LEVEL

This chapter contains a description of the C programmer’s interface to IPW.

We begin with a detailed description of image data formats; this elaborates on the
brief description presented in §3.1. Next, the source-level structure of a generic IPW
primitive is presented. IPW shell script programming is briefly described, and finally
the IPW programming tools are documented.

The descriptions in this chapter complement the detailed ‘‘manual page’’ documen-
tation in chapter 7. The material in chapter 7 is organized for ease of reference,
whereas the material in this chapter is designed to present the programming features
of IPW in a more tutorial fashion, in the order in which they would normally be used.

6.1. IMAGE STRUCTURE
At the lowest level, the external representation of an IPW image is an unstruc-

tured stream of bytes. The ability to pass image data through UNIX pipes is fundamen-
tal to IPW, and pipes allow only sequential access, so any logical structure imposed on
this byte stream must be amenable to strictly sequential processing.

The most fundamental structuring of the image data stream is the separation
between header and pixel data. Both header and pixel data are homogeneous (i.e., they
are not interspersed with one another), and all header data precede all pixel data in the
byte stream. To borrow the terminology of [Martin 1988], IPW allows no ancillary data
in the ‘‘backplane’’ or ‘‘side planes’’ of an ‘‘image cube’’:

backplane

core
side

plane

spatial

spectral

6.1.1. Headers
The term header in IPW has two distinct meanings, depending on the context in

which it is used. The phrase ‘‘image header data’’ refers to the non-pixel portion of the
image data stream. The header data consist of at least one ‘‘header’’, which in this con-
text refers to a logically related subset of the header data. All programmer access to an
image’s header data is via functions that deal with these logical headers.

6.1.1.1. Storage format

Image header data are structured into records, each of which is a variable-length
text string terminated by a newline. Each record contains one or more data fields,
separated by white space (i.e., any combination of blanks and horizontal tabs).

- 122 -

The first record in a header is always a preamble record. The preamble record
contains 4 fields, which appear in the following order:

• a magic string, currently !<header> , which identifies the record as preamble
record;

• the header name, which identifies the type of this header (e.g., win , geo , etc.);

• the (positive integer) image band number with which this header is associated;

• the version number of the header19.

The records following the preamble contain the actual data associated with this
header. Each of these records contains a single keyword-value pair, in the following
format:

keyword=value...

The keyword, =, and value(s) must be separated by white space. Any white space at
the beginning or end of the record is ignored.

The validity of a keyword and its associated value(s) are defined by the parsing
routines for that header. Thus it is possible (but not recommended) for the same key-
word to have different meanings in different headers. The presence of an unrecognized
keyword or value, or the absence of a required keyword or value, is usually treated as
an error.

There are two headers that violate some of the restrictions described above. One
is the BIH (basic image header), described in detail in the next section. The other is
the image preamble, a preamble record whose presence in the image data stream sig-
nals the end of the header data and the beginning of the pixel data. The image pream-
ble has the following special properties:

• Since it is not associated with any particular band, its band number field is set to
-1 .

• It always contains a form-feed character (ASCII 014) immediately preceding the
terminating newline (see §3.1.1).

• It is followed immediately by pixel data.

The BIH and the image preamble are the only headers that must be present. All
other headers are optional, and are associated with a single image band; e.g., if geo-
detic information is required for N bands, then there must be N geodetic headers.

The order of headers in the data stream must observe the following constraints:

• The BIH must be first.

• The image preamble must be last.

• Optional headers with the same name must be contiguous.

A collection of contiguous same-name optional headers is a header group. Header
groups may appear in any order, and the headers within a group need not be sorted by
band (or any other characteristic).

19 In the current implementation, this is the RCS Revision string from the header’s header .h

file. Because of the way RCS keywords are expanded, this field MAY contain embedded blanks.

- 123 -

6.1.1.2. Basic image header

The BIH was originally designed to contain just enough information to allow the
location and extraction of any single pixel in the image. The current implementation of
the BIH also contains annotation and processing history records; these were placed in
the BIH since they are maintained automatically, and the BIH is the only header that
the IPW software may assume will be present.

The BIH is unique in that it has a per-image component (named
basic_image_i), in addition to the per-band components (named basic_image). The
per-image component avoids replication of fundamental data that by definition cannot
vary from band to band. The following keywords must appear in the per-image com-
ponent:

• nlines : number of image lines

• nsamps : number of samples per image line

• nbands : number of bands per image sample

• byteorder : byte order on the host where the image was created

Like the image preamble, the preamble of the per-image component has a -1 in the
band number field.

The following keywords may appear in the per-band component(s):

• bytes : number of bytes per pixel

• bits : number of significant bits per pixel

• annot : annotative text

• history : processing history

bytes and bits are required. Both are needed since IPW pixels always begin on byte
boundaries.

annot and history records are optional, and may appear more than once per
component. An annot record typically contains descriptive text supplied by the user
when the image was ingested into IPW, although some programs write to this field
automatically. Each history record contains a copy of the command line of an IPW
program that has written the image. In both the annot and history records, the
entire line following the = is treated as a single value.

6.1.1.3. Optional headers

IPW images may contain an unlimited number of optional headers. As long as a
header adheres to the format described in §6.1.1.1 above, it will be recognized as a
header by all IPW programs. Note that recognition is NOT the same as interpretation:
there is no guarantee that a particular IPW program will be able to make use of the
contents of any particular optional header. However, any IPW program will be able to
either skip over, or copy unchanged to another image data stream, any input header.

As of this writing, IPW supports the following optional headers:

- 124 -

header name description see programs
geo geodetic coordinates mkgeoh

hor line azimuth hor1d, viewcalc

lq pixel quantization parameters mklqh

or image orientation flip, transpose

sat sensor platform parameters mksath

skew scan line skew angle skew

sun solar geometry mksunh

win extrinsic image coordinates mkwinh, window

The ‘‘see programs’’ column indicates program documentation in §5.2 that may be con-
sulted for more information.

6.1.2. Pixels
A pixel in IPW is the atomic unit of image data. Pixels are scalar quantities. In

the context of remote sensing, a pixel usually represents a single measurement of some
physical phenomenon (e.g., radiance).

A sample is a location in an image raster. With each sample is associated as
many pixels as there are bands in the image. A sample coordinate is the offset of a
sample relative to the first sample in an image line.

The term ‘‘pixel’’ is also used in a more specialized sense, referring to a particular
representation of pixel data within a program; see §6.2.4.2.

6.1.2.1. Storage format

Pixels are stored externally as unsigned integers; i.e., an N-bit pixel may assume
integer values from 0 to 2N−1 inclusive. The following constraints on pixel configura-
tion are imposed by the pixel I/O routines (see §6.2.4.2):

• Pixels must begin on a byte boundary; i.e., any given pixel must occupy an integral
number of bytes, and no other pixel data may occupy those bytes.

• No pixel may occupy more than sizeof(pixel_t) bytes, where pixel_t is an
implementation-defined type (usually unsigned int).

In addition to simplifying pixel I/O, these constraints help make the pixel data
more portable. Moving pixel data between IPW implementations on different machine
architectures requires no more than (possibly) rearranging a pixel’s byte order20. Simi-
larly, exporting IPW pixel data to other software systems requires no more of the
foreign software than the ability to rearrange bytes.

Not all of the bits in the bytes occupied by a pixel need be utilized, since IPW
stores a bit as well as a byte count in the BIH. Unused high-order bits are ignored. It
is advantageous to limit the number of bits per pixel to those strictly necessary, since
integral pixel values are often used as indices into lookup tables, which double in size
for each additional pixel bit.

20 The byteorder field in the BIH helps automate this process.

- 125 -

6.1.2.2. Band interleaving

If we consider a multiband image as a 3-dimensional array, then the three possi-
ble pixel indexing or interleaving schemes21 may be expressed as follows, in C-
language notation:

band sequential (BSQ) image[band][line][sample]

band interleaved by line (BIL) image[line][band][sample]

band interleaved by pixel (BIP) image[line][sample][band]

Each class of generic operation described in Chapter 4 requires a certain context:
a number of pixels previously read that must be retained in memory in order to com-
pute the current output pixel value. The size of the context may be influenced by the
interleaving scheme selected. For univariate point operations, any interleaving scheme
suffices, since no context is required. For geometric operations, the context cannot be
formulated a priori, since it varies from none (for window) to the entire image (for
flip and transpose). However, for multivariate point and neighborhood operations,
the context is predictable, and varies substantially according to the interleaving scheme
used:

operation BSQ BIL BIP

multivariate point LS(B-1) S(B-1) B-1
neighborhood US USB USB

where:

L = number of lines
S = number of samples
B = number of bands
U = number of lines in a kernel

BIP interleaving is clearly superior for multivariate point operations, outweighing
the advantage of BSQ for neighborhood operations. Hence IPW uses BIP interleaving for
image pixel data. Externally, the interleaving occurs at the byte level; e.g., a 1-byte
pixel for band 0 followed by a 2-byte pixel for band 1, etc. Internally, BIP interleaving
is preserved as the pixel values are converted to uniform integer or floating-point types.

6.2. PROGRAM STRUCTURE
In this section we describe the structure of an IPW primitive at the source code

level. Sufficient information will be presented for a competent C programmer to under-
stand the source code for existing IPW primitives, and to develop new ones.

6.2.1. Skeleton

Each IPW primitive has its own source directory. The following files will always
be present; there may be additional source files, depending on how complicated the
primitive is. Within the source file, sequences of text between @s (at-signs) are to be
replaced by program-specific text.

21 We consider transpositions of lines and samples to be equivalent.

- 126 -

main.c contains the source for main , the program’s entry point. This file is
described in detail in the §6.2.2.

pgm.h is #include d by all of the source files comprising the primitive. This file
contains:

• #define s for program-specific macros

• extern declarations for program-specific functions

• a typedef for the PARM_Tstructure. This structure contains all of the global
variables used by the primitive; it is described in detail in §6.2.2.3.

parm.c contains the defining instance of parm , the global variable of type
PARM_T.

headers.c contains the code which processes the input and output image headers.
These tasks are described further in §6.2.3.

primitive .c contains the code that actually implements the function of the primi-
tive. While there is no ‘‘skeleton’’ code for this, a major portion will certainly be
devoted to image I/O, which is described in §6.2.4.

Finally, there is a Makedefs file, to allow ipwmake to build the primitive.

If a new primitive is being developed, ‘‘skeleton’’ versions of all of these files may
be copied from the directory $IPW/skel/pgm .

All IPW source files must #include the header file ipw.h . This is an ‘‘umbrella’’
header file that #include s many other header files, among them <stdio.h> ,
<limits.h> , and <float.h> . If a source file contains multiple #include s, then
ipw.h must be first.

6.2.2. Main
Every IPW main must address the following specific tasks:

• The header comments for the program (see §A.1.1.1) must appear near the begin-
ning of the main.c file.

• A description of the command line expected by the program must be created and
passed to the IPW initialization routine.

• Global parameters in the parm data structure must be initialized.

• Any files required by the program must be opened.

Following these conventional tasks, each of which is elaborated in the following
sections, main typically calls headers , to process any image headers, and then primi-
tive to perform the actual image processing.

6.2.2.1. Header comments

Every main.c file in IPW must contain header comments, in the format
described in §A.1.1.1. These comments constitute the principal documentation of the
primitive for both users and programmers. While programmers will typically examine
the source file directly, users usually access the comments indirectly via the ipwman
command, which extracts the header comments and displays them in manner similar to
the UNIX man command. The command-specific documentation in Chapter 5 is essen-
tially identical to the output of ipwman .

- 127 -

6.2.2.2. Command-line arguments

IPW programs accept standard UNIX command lines:

command -option optarg operand

The command-line arguments are either options, optargs, or operands.

An option is a single character preceded by a minus sign. An option may be
boolean (i.e., its presence or absence is the extent of the information provided to the
program), or it may have one or more optargs (option arguments) associated with it.

operands appear after any options. In IPW, operands are always the names of
input files.

An IPW main manages its command line by:

• initializing an option descriptor data structure for each desired option;

• calling ipwenter with an array pointers to the option descriptors;

• possibly checking for missing or conflicting options by calling opt_check ;

• extracting the information returned in the option descriptors.

The data structures, macros, and functions that manage option descriptors are declared
in getargs.h , which must be #include d by every IPW main.c .

Data structures

An IPW main must define an option descriptor for every option the program is
prepared to accept. The format of an option descriptor definition is:

static OPTION_T opt_ letter = {
’ letter’, " description",
optarg_type, " optarg description",
required_code, min_#_optargs, max_#_optargs

};

The definition must have storage class static because the address of opt_ letter is
used to initialize another data structure, described below22. Also, portions of static
data structures not explicitly initialized are implicitly initialized to 0, which the option
processing routines take advantage of.

letter is the option letter that will be recognized on the command line. In lieu of
’ letter’ , the macro OPERANDmay be specified, to bind this descriptor to the command-
line operands.

description is the description of this option that will appear in the program’s help
message. The help message is generated whenever a program is invoked with the spe-
cial option -H , and also as a result of some common command-line errors (missing
required option, missing optargs, etc.).

letter and description are sufficient to initialize an option descriptor for a boolean
option. If any of the following are specified, they indicate that optargs are expected.

optarg_type indicates the type to which any optargs will be converted. It can be
one of the following macros:

22 Also, many versions of C do not allow non-static data structures to be initialized.

- 128 -

macro optarg type may be copied into
INT_OPTARGS aint_t int

REAL_OPTARGS areal_t double

STR_OPTARGS astr_t char *

LONG_OPTARGS along_t long

An analogous set of type_OPERANDSmacros may be specified in an operand descriptor.

optarg description is printed as a placeholder for the optarg in the program’s help
message.

required_code is either OPTIONALor REQUIRED, and indicates whether or not the
option must be specified.

min_#_optargs is the minimum number of optargs that will be accepted for this
option. If not specified, it defaults to 1.

max_#_optargs is the maximum number of optargs allowed for this option. If
max_#_optargs is not specified, the number of optargs is unlimited23.

Here are examples of complete option descriptor definitions, from the window
primitive:

static OPTION_T opt_b = {
’b’, "begin line,sample",
REAL_OPTARGS, "coord",
OPTIONAL, 2, 2

};

static OPTION_T opt_g = {
’g’, "window specified re: this band’s geodetic header",
INT_OPTARGS, "band",
OPTIONAL, 1, 1

};

static OPTION_T operands = {
OPERAND, "input image file",
STR_OPERANDS, "image",
OPTIONAL, 1, 1,

};

These definitions indicate that -b , if specified, must have exactly two floating-point
optargs, while -g , if specified, must have exactly one integer optarg. There may be no
more than one string-valued operand.

Functions

Command-line arguments, available in the argc and argv parameters to main ,
are parsed by the ipwenter function. argc , argv , and an array of pointers to the
option descriptors must be passed to ipwenter . The array is defined as follows:

23 The operating system usually imposes some (comfortably large) limit on the size of a command

line.

- 129 -

static OPTION_T *optv[] = {
&opt_ letter,
&opt_ letter,
...
&operands,
0

}

i.e., the address of each option descriptor are used to initialize the optv array.

A call to ipwenter must be the first executable statement in main . The call
looks like this:

ipwenter(argc, argv, optv, " description");

where description is a one-line text description of the purpose of the program, such as
would appear in the NAMEsection of the header comments.

ipwenter will terminate execution with a help message if the command line is
obviously incorrect, or if the -H option was specified. Otherwise, on return, it has
placed the requested options, optargs, and operands in hidden variables within the
option descriptors.

There are certain interactions between options that can be checked mechanically
but cannot be specified solely via option descriptors. For example, one option may
require the presence of another, or two particular options may be incompatible. These
kinds of interactions can be checked by the opt_check function, whose calling
sequence is:

opt_check(n_min, n_max, n_opts,
&opt_ letter, &opt_ letter, ...)

n_opts indicates the number of pointers to option descriptors that follow as arguments.
opt_check checks that at least n_min and at most n_max of these options were speci-
fied. If either of these tests fail, opt_check cause program termination with an
appropriate error message. If necessary, opt_check may be called more than once.

After the call to ipwenter and any calls to opt_check , the options, optargs, and
operands may be accessed by using the corresponding option descriptor as an argument
to one of the following macros:

macro returns
got_opt(opt_ letter) TRUE if this option was specified, else FALSE
n_args(opt_ letter) number of optargs specified with this option
int_arg(opt_ letter, i) i’th int optarg for this option
long_arg(opt_ letter, i) i’th long optarg for this option
real_arg(opt_ letter, i) i’th double optarg for this option
str_arg(opt_ letter, i) i’th char * optarg for this option
int_argp(opt_ letter) array of int optargs for this option
long_argp(opt_ letter) array of long optargs for this option
real_argp(opt_ letter) array of real optargs for this option
str_argp(opt_ letter) array of char * optargs for this option

- 130 -

Note that optargs may be accessed either by value, or indirectly via an array of optargs
associated with each option. There is no type checking performed by these macros, so
you must be sure to use the macro that corresponds to the type_OPTARGSspecified in
the option descriptor definition.

6.2.2.3. Parameter initialization

Software engineers generally prefer argument lists, as opposed to global variables,
for passing data between modules, since argument lists tend to make the coupling
between modules more explicit, and also are not vulnerable to accidental access outside
the context of intermodule communication. However, if argument lists are the only
means of intermodule communication, they can become so long as to be excessively
prone to programming errors, as well as difficult for a programmer to read.

IPW attempts to solve this problem by distinguishing between variable argu-
ments, which are likely to assume different values every time a function is called, and
parametric arguments which, once set, retain the same value throughout the execu-
tion of the program. Variable arguments are passed between modules in function argu-
ment lists, whereas parametric arguments are collected in a single global data struc-
ture. By enclosing parametric arguments in a data structure, the risk of accidental
access is drastically reduced, and instances of access are visually highlighted by the
data structure notation.

Data structures

Parametric arguments are always kept in a global structure parm , which has the
typedef ’d type PARM_T. The programmer decides which variables belong in parm and
edits the declaration of PARM_Tin pgm.h accordingly. pgm also contains an extern
declaration for parm , which is defined in the separate file parm.c . For example, here
are the relevant lines from the pgm.h file for the flip primitive:

typedef struct {
int i_fd; /* input image file descriptor */
int o_fd; /* output image file descriptor */
bool_t lines; /* ? flip lines */
bool_t samps; /* ? flip samples */

} PARM_T;

extern PARM_T parm;

Since pgm.h is #include d by all source files in the program, any module may access
the parameters via parm. membername.

Option settings and converted optarg values are typical candidates for inclusion in
a parm structure. In the example above, the members lines and samps correspond
to the presence or absence of the -l and -s options to flip . Thus the main for flip
contains:

parm.lines = got_opt(opt_l);
parm.samps = got_opt(opt_s);

- 131 -

6.2.2.4. File access

All IPW file access is via UNIX file descriptors. This is the lowest level of file
access provided by UNIX. File descriptors are used instead of higher-level objects (e.g.,
FILE pointers) because:

• File access at the file descriptor level is available, and behaves predictably, on all
UNIX systems. By contrast, the so-called ‘‘portable’’ stdio routines have notable
inconsistencies between implementations (e.g., in mechanisms for buffer size
specification), and vary dramatically in the efficiency of binary I/O (fread and
fwrite).

• File descriptors are int s by definition, and thus may be used as array indices.
This greatly simplifies the implementation of the I/O routines, since a single ‘‘han-
dle’’ with a simple type may be used to access a variety of internal data structures.

The IPW I/O subsystem is organized into 3 layers, each of which is described in
detail in a subsequent section:

• uio : unstructured I/O on byte streams;

• pixio : integer pixel I/O

• fpio : floating-point pixel I/O

There are also read and write routines provided for each header type.

In main an IPW program’s interaction with the I/O subsystem is limited to obtain-
ing file descriptors, either for named files specified as optargs or operands, or for the
standard input or standard output. File descriptors are returned by the following uio
routines:

• uropen : open a named file for reading

• uwopen : open a named file for writing

• ustdin : returns file descriptor for standard input

• ustdout : returns file descriptor for standard output

Note that, in order to ensure proper uio initialization, file descriptors for the standard
input and output should be obtained from ustdin or ustdout , rather than by directly
accessing the presumed defaults (typically 0 and 1).

Note also that files are opened for reading OR writing, but not both; this is in
keeping with the strictly sequential processing model enforced by UNIX pipes.

The following is a typical minimal example of how an IPW main would access its
input and output files. The input file is either specified by name as a command line
operand, or the standard input is used. The output file is the standard output. The file
descriptors are stored in the parm structure, since they are used by other modules and
do not change once they are set.

- 132 -

/*
* access input file
*/

if (!got_opt(operands)) {
parm.i_fd = ustdin();

}
else {

parm.i_fd = uropen(str_arg(operands, 0));
if (parm.i_fd == ERROR) {

error("can’t open
str_arg(operands, 0));

}
}

no_tty(parm.i_fd);
/*

* access output file
*/

parm.o_fd = ustdout();
no_tty(parm.o_fd);

The function no_tty checks whether the argument file descriptor is connected to the
user’s terminal; if it is, program execution is terminated with an error message. This
catches the common error of the user failing to redirect the standard input and output.

6.2.3. Header processing
In a typical IPW primitive, the programmer supplies a headers function that:

• processes any input image headers;

• copies information from selected input headers to the parm structure;

• creates any new output image headers;

• writes any output image headers.

Of course, not every headers function will perform all of these tasks: some prim-
itive have no input images, or produce no output image, or ignore all image headers
except the BIH. In other primitives, it is impossible to perform all header processing in
a single headers function, for example if input pixels must be processed before the
output headers can be created.

A basic decision to be implemented in the headers function is the disposition of
optional input image headers (i.e., any headers other than the BIH). An input header
may be:

• skipped (i.e., discarded);

• copied directly to the output image;

• ingested- its contents placed in a data structure so as to be accessible to the pro-
gram.

It is important to realize that a header must be explicitly ingested before its contents
can be examined. Similarly, once a header has been ingested, it will not appear in the
output image unless explicitly written to it.

- 133 -

The BIH is treated differently from optional headers in that it is always explicitly
ingested and explicitly written, whereas optional headers may be disposed of en masse
using functions described below. explicitly ingested, This distinction exists primarily
because the act of ingested or writing a BIH initializes essential state information in
the I/O subsystem, without which the automatic processing of the optional headers
could not occur.

6.2.3.1. Data structures

Ingested and newly-created image headers are accessed via arrays of pointers to
structures of type HEADERH_T, which is typedef d in the headerh.h file for each
header. Arrays are used since there may be as many headers of a specific type as there
are bands in the image, while pointers are used since the in-memory representations of
the headers are dynamically allocated.

For example, the BIH is described in bih.h , which contains a typedef for
BIH_T . The ingest and creation functions for a BIH return a pointer to an array of
pointers to BIHs:

BIH_T **bihpp; /* The "pp" suffix is customary */

where bihpp[i] is a pointer to the BIH for band i.

BIH for band 0

nbands-1

1

0bihpp

To avoid explicit reference to structure member names within an IPW program,
each headerh.h file also defines a set of function macros that take (at minimum) a
pointer to a header as an argument, and return the value of a header field. These mac-
ros all have names of the form headerh_member . For example,

bih_nbytes(bihpp[0])

returns the number of bytes per sample in image band 0.

Note that the in the special case of the BIH, the per-image values will be repli-
cated for each band; e.g., bih_nlines(bihpp[i]) = bih_nlines(bihpp[j]) for any
valid i and j. To lessen confusion, programs should always access these replicated
fields via band 0.

6.2.3.2. Functions

In this section we will illustrate possible image header processing sequences with
a series of code fragments. These examples assume that the following members of the
parm structure have been initialized:

int i_fd; /* input image file descriptor */
int o_fd; /* output image file descriptor */

and that the following local variables have been declared:

- 134 -

BIH_T **i_bihpp; /* -> array of input BIHs */
BIH_T **o_bihpp; /* -> array of output BIHs */

All IPW headers are provided with a standard set of I/O and utility functions,
declared in the headerh.h file. Thus, for example, there is a winhread function for
win headers analogous to the bihread function demonstrated below.

The first operation performed on an input image is to read its BIH:

i_bihpp = bihread(parm.i_fd);
if (bihpp == NULL) {

error("can’t read BIH");
}

The first operation performed on an output image is to write its BIH. In this sim-
ple case, we write a duplicate of the input BIH:

o_bihpp = bihdup(i_bihpp);
if (o_bihpp == NULL) {

error("can’t duplicate input BIH");
}

if (bihwrite(parm.o_fd, o_bihpp) == ERROR) {
error("can’t write BIH");

}

Once the input BIH has been read and the output BIH written, all remaining input
headers may be copied directly to the output image by calling copyhdrs :

nbands = bih_nbands(o_bihpp[0]);
copyhdrs(parm.i_fd, nbands, parm.o_fd);

Only headers for band numbers less than nbands will be copied. This is useful if the
output image has fewer bands than the input image.

Alternatively, if all optional input headers should be ignored,

skiphdrs(parm.i_fd)

will read and discard any remaining input headers.

If it is desired to ingest some of the optional headers, then a mechanism similar to
that used for command-line argument specification is employed. A header request
data structure, similar to an option descriptor, is declared and initialized for each type
of header that is to be either ingested or skipped. Then, a header request vector is
initialized with the addresses of these data structures, and is passed to the function
gethdrs .

Here is a sample code fragment:

- 135 -

static GETHDR_T h_lqh = {LQH_HNAME, (ingest_t)lqhread};
static GETHDR_T h_winh = {WINH_HNAME};
static GETHDR_T *hv[] = {&h_lqh, &h_winh, NULL};

LQH_T **i_lqhpp;
...
/* read BIH from i_fd; write BIH to o_fd */
...
gethdrs(parm.i_fd, hv, nbands, parm.o_fd);

if (got_hdr(h_lqh)) {
i_lqhpp = (LQH_T **) hdr_addr(h_lqh);

}

The header request h_lqh specifies that the header named LQH_HNAMEis to be
ingested using the function lqhread , while the request h_winh specifies that the
header named WINH_HNAMEis to be ignored (no ingest function is specified). The call to
gethdrs reads headers from parm.i_fd , ingests or skips any that are specified in hv ,
and copies any others whose band numbers are less than nbands to parm.o_fd .

After gethdrs returns, the macro got_hdr may be used to check whether a
requested header was ingested; if it was, then the macro hdr_addr may be used to
fetch the address of the array of header pointers.

Note that copyhdrs , skiphdrs , gethdrs , and the associated macros and type
declarations are all declared in gethdrs.h , which must be #include d by any source
files accessing these functions.

The easiest way to create a new header is to duplicate an existing one. Unfor-
tunately, this approach fails if:

• no header of the desired type has been ingested;

• existing headers of the desired type have the wrong number of bands.

Therefore, every header has an associated headerhmake function, which creates a sin-
gle header (NOT an array of headers) of the desired type, and returns a pointer to it.

Because an array of headers, one per band, is usually required, the following code
fragment is typical. winhmake is used for illustration; be aware that each
header hmake function has a unique calling sequence depending on the contents of the
particular header.

- 136 -

o_winhpp = (WINH_T **) ecalloc(nbands, sizeof(WINH_T *));
if (o_winhpp == NULL) {

error("can’t allocate WIN header pointers");
}

for (band = 0; band < nbands; ++band) {
WINH_T *winhp;

winhp = winhmake(bline, bsamp, dline, dsamp);
if (winhp == NULL) {

error("band %d: can’t make WIN header",
band);

}

o_winhpp[band] = winhp;
}

Note that if the same win header were to be written to all output bands, there could be
a single call to winhmake before the for loop, and the loop could simply set all ele-
ments of o_winhpp to the same value.

copyhdrs , skiphdrs , and gethdrs all leave the input data stream positioned
just before the first pixel in the image24. However, header output must be explicitly
terminated by calling boimage with the output image file descriptor:

if (boimage(parm.o_fd) == ERROR) {
error("can’t terminate header output");

}

This writes an image preamble (see §6.1.1.1) to the output image, indicated that any
subsequent output to parm.o_fd will be pixel data.

6.2.4. Pixel processing
Image pixel data may be read and written with the uio , pixio , or fpio layers of

the I/O subsystem. The decision as to which layer to use is largely dictated by the par-
ticular application: whether the application needs to access individual pixel values,
and whether those values need to be converted between integral and floating-point
representations.

Calls to different I/O layers may not be mixed on the same file descriptor, since
each layer maintains separate state information and internal buffers.

6.2.4.1. uio

uio functions are seldom called directly when processing pixel data, since they
present data exactly as they appear externally; i.e., without any unpacking of the pixel
bits into accessible data types. However, in addition to the file access functions
described in §6.2.2.4, uio functions may be invoked if access to the individual pixel
values is not required, as in bulk copying of pixel data from an input to the output

24 Neither return an error code; instead, they cause program termination with an error message
if any errors are encountered.

- 137 -

image (e.g., by the window primitive). uio also supports line-oriented text I/O, which
is used by primitives that process text data (e.g., convolve , edimg , etc.).

Functions

The fundamental uio operations are uread and uwrite , whose usage closely
parallels their UNIX namesakes:

int n_do, n_done;
addr_t buf;

n_done = uread(parm.i_fd, buf, n_do);

n_done = uwrite(parm.o_fd, buf, n_do);

where n_do is the number of bytes to transfer, n_done is the number of bytes success-
fully transferred (or ERROR), and buf is a pointer25 to at least n_do bytes of memory,
containing the data read or to be written.

Often it is desirable to skip an arbitrary number of bytes of input data. With
UNIX system calls this could be accomplished quite efficiently with lseek , but this will
not work on a pipe, nor is it compatible with uio ’s internal buffering. Therefore, the
routine urskip is provided to simulate a forward seek on an input file:

long n_do, n_done;

n_done = urskip(parm.i_fd, n_do);

Note that the byte counts are long , to accommodate large files.

Since one of the main reasons for accessing the uio layer directly is to simply
copy an arbitrary number of bytes from one file descriptor to another, the function
ucopy is provided to encapsulate this operation:

long n_do, n_done;

n_done = ucopy(parm.i_fd, parm.o_fd, n_do);

copies n_do bytes from parm.i_fd to parm.o_fd .

For reading and writing line-oriented text, uio provides the functions ugets and
uputs , analogous to the stdio functions fgets and fputs , respectively. The line-
oriented functions may be freely intermixed with uread or uwrite , although this is
uncommon26.

The following example demonstrates the use of the line-oriented uio in conjunc-
tion with the C library functions sscanf and sprintf ; this is the recommended stra-
tegy for parsing text I/O in IPW:

25 addr_t is the generic IPW pointer type; see §6.2.6.
26 The low-level image header I/O routines take advantage of this.

- 138 -

char i_text[MAX_INPUT], o_text[MAX_INPUT];
int val1, val2;

if (ugets(parm.i_fd, i_text, sizeof(i_text)) == ERROR) {
error("read error");

}

if (sscanf(i_text, "%d %d", &val1, &val2) != 2) {
uferr(parm.c_fd); /* see §6.2.5.5 */
error("bad input: %s", i_text);

}

... some processing here ...

(void) sprintf(o_text, "%d %d", val1, val2);

if (uputs(parm.o_fd, o_text) == strlen(o_text)) {
error("read error");

}

ugets reads bytes into i_text until either a newline is read, or sizeof(i_text)-1
bytes have been read, or end-of-file is reached on parm.i_fd . A null byte (’\0’) is
appended to the last byte read, so the i_text buffer may be treated like a C string.
uputs writes bytes from o_text to parm.o_fd until a null byte is encountered (the
null byte is not written). Both of these functions return the number of bytes read or
written, or ERROR.

6.2.4.2. pixio

The pixio layer, which calls the uio layer, presents pixels as unsigned integers
of type pixel_t (installation-dependent, but usually unsigned int). Thus the
pixio layer is appropriate for operations that require access to individual pixels and/or
their quantized (i.e., raw) values.

Any source files accessing any of the pixio routines must contain a:

#include "pixio.h"

line. A BIH must have been read from or written to a file descriptor before any pixio
operations may be performed on it.

The pixio routines transfer data in units of pixel vectors. A pixel vector is the
collection of pixel values associated with a single image sample; i.e., there are as many
pixels in a pixel vector as there are bands in the image. The pixio routines handle
the conversion between the external byte-aligned and the internal pixel_t -aligned
representation of a pixel vector:

- 139 -

pixel_t

(raw)

buf:

pvread(parm.i_fd, buf, 1)

Functions

pvread and pvwrite are the only two pixio functions that are normally used:

pixel_t *buf;
int n_do, n_done;
...

buf = (pixel_t *) ecalloc(nsamps * nbands, sizeof(pixel_t));
if (buf == NULL) {

error("can’t allocate pixel I/O buffer");
}
...

n_done = pvread(parm.i_fd, buf, n_do);

n_done = pvwrite(parm.o_fd, buf, n_do);

where n_do is the number of pixel vectors to read or write, and n_done is the number
of pixel vectors actually read or written.

Note that since the units of transfer are pixel vectors, the calculation of the buffer
size to use must take account of both the desired number of samples to transfer, and
the number of pixels per sample.

Accessing the individual pixels in a one-dimensional pixel_t buffer is typically
done as follows:

- 140 -

int samp;
pixel_t *bufp;
...

bufp = buf;
for (samp = 0; samp < nsamps; ++samp) {

int band;

for (band = 0; band < nbands; ++band) {
/* do something with bufp[band] */

}

bufp += nbands;
}

Alternatively, pixel vectors may be read into a 2-dimensional buffer, allowing random
access to any pixel in the buffer:

pixel_t **buf;
...

buf = (pixel_t **) allocnd(sizeof(pixel_t), 2, nsamps, nbands);
if (buf == NULL) {

error("can’t allocate pixel I/O buffer");
}
...

n_done = pvread(parm.i_fd, buf[0], n_do);

/* do something with buf[samp][band] */

See §6.2.6.1 for a discussion of allocnd .

6.2.4.3. fpio

The fpio layer, which calls the pixio layer, presents pixels as floating-point
values of type fpixel_t (installation-dependent, but usually float). Thus the fpio
layer is appropriate for operations that require access to the de-quantized (i.e., ‘‘real
world’’) pixel values.

Any source files accessing any of the fpio routines must contain a:

#include "fpio.h"

line.

The use of the fpio layer imposes the following additional execution overhead,
with respect to the pixio layer:

• data copying between the fpio and pixio layers;

• conversion between integer and floating-point data representations;

• software-emulated floating-point operations, on systems without floating-point
hardware.

- 141 -

The IPW programmer should be aware of these costs in deciding which I/O layer to
use in implementing a particular application.

Data structures

The conversion between pixel_t and fpixel_t values in fpio is controlled by a
set of lookup tables or maps, one per band. While these maps are maintained inter-
nally by fpio , there are various implicit and explicit actions the programmer can take
to affect these maps.

The maps are initialized on the first call to an fpio routine. There are two possi-
ble initializations:

• If an lq header has been ingested (by lqhread) for the band whose table is map
initialized, then the mapping described by the lq header is used to initialize the
map.

• Otherwise, the map is initialized with a 1:1 mapping (i.e., a pixel_t value of 100
maps into an fpixel_t value of 100.0.

The lq headers may be ingested explicitly by including a header request of the form:

static GETHDR_T h_lqh = {LQH_HNAME, (ingest_t)lqhread};

in the vector passed to gethdrs . Alternatively, there is a function fphdrs that
behaves identically to copyhdrs :

fphdrs(parm.i_fd, nbands, parm.o_fd);

except that any lq headers in the input image are used to initialize the fpio maps for
both the input and the output image.

Functions

Prior to reading or writing and pixel data, the fpio maps may be accessed by the
fpmap function:

fpixel_t **map;
int *maplen;

map = fpmap(parm.i_fd);
maplen = fpmaplen(parm.i_fd);

if it is necessary to modify or otherwise use any of the values therein. The fpixel_t
value corresponding to the pixel_t value value in band band is in map[band][value] .
The array maplen contains the length of each row of map (the lengths may vary since
the number of significant bits per pixels is band-dependent).

The maximum and minimum fpixel_t values for each band may be accessed
with:

fpixel_t *fmin, *fmax;

fmin = fpfmin(fd);
fmax = fpfmax(fd);

where the minimum value for band band is in fmin[band] , etc. This information can
be useful for algorithms that need to know the range of input values before doing any

- 142 -

processing.

The actual input and output are handled by:

fpixel_t *buf;
int n_do, n_done;
...

n_done = fpvread(parm.i_fd, buf, n_do);

n_done = fpvwrite(parm.o_fd, buf, n_do);

The calling sequences are identical to pvread and pvwrite . As with those functions,
the units of input and output are pixel vectors, and either a one- or two-dimensional
array may be used as the I/O buffer.

6.2.5. Error handling
IPW error handling is simple and straightforward. Since C provides no run-time

error checking, IPW code must explicitly check the result of any operation that could
possibly fail, and call an error-handling function if failure is detected. Only synchro-
nous errors are handled: there is no IPW strategy for dealing with asynchronous errors
(signals), nor for restarting failed operations

When an error is detected, it may be either reported immediately, or logged for
future reporting (‘‘deferred’’). If immediate reporting is desired, then one of the follow-
ing functions is called:

• warn

• error

• bug

These functions use their parameters, and some internal state information maintained
by IPW, to construct an error message, which is written to the standard error output.
bug accepts a single string parameter, while warn and error accept printf -style
variable-length parameter lists (the first parameter is always a format string, and sub-
sequent parameters, if present, must agree in type and number with the %-keys in the
format string.)

The function macros:

• CHECK

• REQUIRE

may be used instead of bug in the specific situations described in §6.2.5.4.

Except for warn , all of the functions and function macros listed so far cause pro-
gram termination with a nonzero exit status once the appropriate message has been
written.

If it is desirable to log as much error information as possible, but postpone calling
one the functions listed above (perhaps to return to a higher level in the calling hierar-
chy), then one or more of the following functions may be called:

• syserr

• uferr

- 143 -

• usrerr

These functions save system, file, and user-supplied error information. Program execu-
tion continues, but the saved information will appear in the next error message.

6.2.5.1. Warnings

Warnings are issued to report non-obvious program actions that do not require
program termination. A typical situation requiring a warning is when a program
defaults a value that would normally be obtained from a missing input image header.
For example, gradient normally determines the grid spacing of the input image from
its geo geodetic header; if no such header is present, then a default grid spacing is
assumed. The user of gradient might not be aware that the input image lacks a geo
header, or that gradient expects one, so a warning is issued:

if (!got_hdr(h_geo)) {
warn("Elevation file has no GEOH, spacing set to 1.0");

}

produces the following message:

gradient: WARNING:
Elevation file has no GEOH, spacing set to 1.0

Note that newlines are supplied automatically when the message is written; they need
not appear in the format string parameter.

Warnings should not be used to report program actions based on defaults for
missing command-line arguments, since such defaults should be obvious from both the
program’s usage message and its on-line documentation.

6.2.5.2. Errors

error is called when an external condition outside the program’s specification
(nonexistent file, unacceptable image attributes, incorrect command line arguments,
etc.) requires program termination. Such conditions are always user-correctable; i.e.,
error should only be called for condition that could be mitigated by reissuing the com-
mand with different inputs, outputs, or arguments. A typical call would be:

fd = uropen(filename);
if (fd == ERROR) {

error("can’t open \"%s\"", filename);
}

which would print:

program: ERROR:
can’t open " filename"
(UNIX error is: No such file or directory)

(The ‘‘UNIX error ’’ message is explained in §6.2.5.5.)

6.2.5.3. Bugs

An IPW bug is an error in program logic that is detected by a test implanted in the
source code. These tests are designed to catch ‘‘can’t happen’’ situations; e.g., the
default branch of a switch for which the case s account for all possible values of the

- 144 -

switch condition, or a result that is obviously wrong even though all input values are
correct. Bugs by definition represent a failure of the program to perform as specified,
and can only be fixed by modifying the source code. For example:

sin_slope = do_slope();
if (sin_slope < 0.0 || sin_slope > 1.0) {

bug("impossible slope");
}

prints:

program: BUG:
impossible slope
(file " filename", line number)
(command line: program ...)

The output generated by bug includes the source file name and line number in which
bug was called, and a copy of the program’s command line; this information is often
useful to a programmer attempting to reproduce the bug.

6.2.5.4. Assertion violations

Two special cases of a bug message occur frequently enough that macros are pro-
vided to handle them explicitly. These are assertion violations, which occur when a
logical statement of a fundamental property of the program (i.e., an assertion) is found
to be false. Assertions are useful checkpoints, both in terms of documenting the under-
lying assumptions of a program, and for guaranteeing that the program terminates if
these assumptions are violated.

In IPW, assertions are checked with the CHECKmacro. CHECK’s single parameter
is logical expression which, if false, triggers a bug condition:27

sin_slope = do_slope();
CHECK(sin_slope >= 0.0 && sin_slope <= 1.0);

produces the following output:

program: BUG:
Assertion "sin_slope >= 0.0 && sin_slope <= 1.0" failed
(file " filename", line number)
(command line: program ...)

Compare this example to the one in §6.2.5.3 — the code is certainly cleaner, and the
actual test that failed is reproduced in the error message.

An even more specific bug occurs when a library function called with invalid
parameters. This constitutes a precondition violation since valid parameters are a
precondition for a function’s successful execution [Meyer 1988]. The failure of a func-
tion to execute properly when passed invalid parameters is not a bug in the function, it
is a bug in the caller for allowing the invalid parameters to be passed. To avoid execut-
ing with invalid parameters, all IPW library functions validate their parameters with
the REQUIREmacro. For example, the library function uropen must not be passed a
NULL filename pointer:

27 This is based on a facility introduced in Version 7 UNIX [BTL 1983].

- 145 -

int
uropen(name)

char *name; /* UNIX file name */
{

...
REQUIRE(name != NULL);
...

}

If the precondition name != NULL is false, then the program terminates with following
error output:

program: BUG:
Precondition "name != NULL" violated
(file "uropen.c", line number)
(command line: program ...)

This alerts the application programmer to a probable bug in the application code, as
opposed to the IPW library.28

Since both CHECKand REQUIREreproduce their expression parameter verbatim in
the bug message, it is important that the expression be self-documenting. Variable
names should be meaningful; in the case of REQUIRE, they should match the parameter
names used in the library function’s header comment, which is used to generate the
external documentation for the function.

6.2.5.5. Deferred errors

The deferred error functions allow the separation of error detection and error han-
dling. This is often necessary since a function detecting an error may not have enough
information to construct a complete error message. Calling one or more of the deferred
error functions allows a function to record the available error information and then
return, ‘‘deferring’’ the error-handling responsibility to the caller. Of course, a function
detecting an error must still return an error indication, since the caller cannot indepen-
dently detect that an error has occurred; but, the error indication need not be specific,
and the caller need not attempt to ‘‘decode’’ it.

The syserr function notifies the error handler that a UNIX system call has
returned an error indication. This causes the error handler to include a UNIX system
error message in the output produced by a subsequent call to warn , error , or bug . To
elaborate on an earlier example, a program calls uropen to establish byte-level read
access to named UNIX file. uropen contains the following code:

fd = open(name, O_RDONLY);
if (fd == SYS_ERROR) {

syserr();
return (ERROR);

}
...
return (fd);

28 Probable, but not certain, since IPW library functions do call each other.

- 146 -

If the UNIX system call open fails, then uropen calls syserr and returns an error
indication. The return value of uropen must be checked by the caller:

fd = uropen(filename);
if (fd == ERROR) {

error("can’t open %s", filename);
}

If uropen fails, then error is called, since failure to access a file is almost always
correctable by the user. The resulting error message is:

program: ERROR:
can’t open " filename"
(UNIX error is: No such file or directory)

The parenthetical ‘‘UNIX error ’’ message is the result of calling syserr .

The uferr function passes a UNIX file descriptor to the error handler, causing the
filename associated with the descriptor to be incorporated in the next error output.
The usrerr function saves a user-supplied error message, using the same printf -like
syntax as warn and error .

In the following fragment, taken from the geohread library function, the band
number of the header just ingested is compared against the valid band numbers for the
current image:

if (ban d < 0 || band >= nbands) {
uferr(fd);
usrerr("\"%s\" header: bad band \"%d\"",

GEOH_HNAME, band);
return (NULL);

}

Functions like geohread that ingest optional headers are usually called by the follow-
ing fragment in function gethdrs :

p->hdr = (*p->ingest) (fdi);
if (p->hdr == NULL) {

error("can’t ingest header");
}

So, if the range test on band fails, the following error message is generated:

program: ERROR:
can’t ingest header
(File: filename)
(IPW error is: "geo" header: bad band " band")

If warn is called after syserr , uferr , or usrerr , then the saved information is
cleared after the message is printed.

IPW programmers are encouraged to use uferr and usrerr in their own func-
tions. syserr will probably be less useful since the UNIX system calls required by IPW
are already embedded in the IPW library.

- 147 -

6.2.6. Memory management
IPW programs use dynamically allocated memory wherever possible, to maximize

performance on memory-limited systems. IPW provides its own interfaces to the UNIX
and C library memory allocation functions, which should not be called directly.

IPW programs use the defined type addr_t to hold a generic memory address29.
Values of this type are returned by the IPW memory allocation functions, and are
expected as arguments by functions that are normally passed arrays of otherwise
unspecified type. The only valid contexts for the addr_t type are as:

• a cast in a function argument list;

• a pointer to a buffer whose contents will not be examined.

In other words, an addr_t pointer may never be dereferenced.

6.2.6.1. Functions

The basic IPW memory allocation function is ecalloc :

addr_t mem;
int nelem, elsize;
...

mem = ecalloc(nelem, elsize);
if (mem == NULL) {

error("can’t allocate %d-element array", nelem);
}

ecalloc differs from the ANSI C library function calloc in that its arguments are
int s instead of unsigned s, which helps avoid the use of otherwise superfluous casts.
ecalloc also supplies failure information to the IPW error handling routines.

allocnd may be used to allocate arrays with an arbitrary number of dimensions.
Here is an example allocating a 3-dimensional integer array:

int ***demo3d;

demo3d = (int ***) allocnd(sizeof(int), 3, dim1, dim2, dim3);

The first two arguments are the size in bytes of an array element and the number of
dimensions. The remaining arguments are the size of the array in each dimension.
Note that the return value must be placed in a pointer typed for the correct number of
levels of indirection.

The array returned by allocnd is indexed by ‘‘dope vectors’’:

29 This is analogous to void * in ANSI C.

- 148 -

demo3d:

There are two major benefits to this indexing scheme:

• the array (or any subset thereof) may be passed as an argument to a function,
without the function having to specify the array’s size in the argument’s declara-
tion;

• since the array data are stored contiguously, the address of the first element in
the array is also the address of the entire array (this can be used to advantage by
routines like memcpy that operate on 1-dimensional arrays).

A specialized allocation function strdup 30 combines the functionality of ecalloc
and strcpy :

char *old_s, *new_s;
...

new_s = strdup(old_s);

new_s will point to a newly-allocated copy of the string pointed to by old_s .

6.3. SHELL SCRIPT SUPPORT
The IPW program model encourages the combination of primitives at the command

level into complex applications. The ease with which command scripts may be created
may give an illusion of impermanence, but in fact, many scripts wind up being as gen-
erally useful as primitives. IPW therefore includes some support for writing command
scripts that are robust enough to be indistinguishable from primitives to an IPW user.

6.3.1. Skeleton
A skeleton shell script is provided in $IPW/skel/sh/PGM.sh . Some of the more

important features of this script are described in this section.

The first line in an IPW shell script is always:

: ${ IPW?}

This serves two purposes. The : as the first character of the script is needed on some
systems to force the script to be executed by sh instead of csh 31. The ${ IPW?} causes
the script to abort if the IPW environment variable is not set, so that script features
that depend on this variable need not incorporate separate validity checks.

The script should then contain standard IPW program headers comments32, with

30 This function is based on a C library function provided on some XENIX systems.
31 See §8.4.1 for more on this problem.
32 See §A.1.1.1.

- 149 -

leading ##s so they can be recognized by the ipwman command.

The next lines are usually:

PATH="$PATH:$IPW/lib"
. ipwenv

The script’s command search path must include $IPW/lib , which contains the script
support functions described in the next section. The file $IPW/lib/ipwenv initializes
system-dependent environment variables.

There is some standard ‘‘boiler-plate’’ for dealing with command-line arguments,
to help standardize the script’s user interface. The UNIX command getopt is used to
regularize the command line, and the IPW command usage (described in the next sec-
tion) generates a standard help message if the command line is incorrect. The follow-
ing example is taken from the mklut command:

optstring=’i:o:k:’
synopsis=’[-i in_nbits] [-o out_nbits] [-k bkgd]’
description=’make look-up table’

set - ‘getopt "$optstring" $* 2>/dev/null‘ ||
exec usage $0 "$synopsis" "$description"

Once the command line has been standardized by getopt , it is parsed with a
while loop. The argument ‘‘-- ’’ is supplied by getopt to mark the end of the options.
The use of while and shift s leaves the operands intact, for use by subsequent pro-
grams invoked by the script. The following example is also from mklut :

while :; do
case $1 in
--) shift

break
;;

-i) ibits=$2
shift
;;

-o) obits=$2
shift
;;

-k) const=$2
shift
;;

*) exec sherror $pgm ’"getopt" failed’
;;

esac
shift

done

The remainder of a script is wholly dependent on the particular application.
Existing script in $IPW/bin should be examined by anyone developing a new IPW
script.

- 150 -

6.3.2. Usage, sherror
In addition to object libraries and command-specific data files, $IPW/lib contains

programs that are intended to be invoked by shell scripts, rather than directly by IPW
users. Two of these are usage and sherror , which are intended to standardize the
error messages generated by a shell script.

usage is invoked as:

usage command-name " synopsis" " description"

command-name is always obtainable from the positional parameter $0 . The synopsis
and description strings should be the same as those in the SYNOPSISand NAMEsec-
tions of the header comments. For example:

usage $0 ’[-i in_nbits] [-o out_nbits] [-k bkgd]’ \
’make look-up table’

produces the following output:

command -- make look-up table

Usage: command [-i in_nbits] [-o out_nbits] [-k bkgd]

usage is usually exec ’d so that it will cause the program to exit.

The sherror command produces a standardized error message. It may be
invoked with either 2 or 3 arguments. The command:

sherror $0 "can’t write image to a terminal"

produces

command: ERROR:
can’t write image to a terminal

If a third parameter is supplied then it is assumed to be a file name:

sherror $0 "can’t open" file

produces:

command: ERROR:
File " file": can’t open

6.4. DEVELOPMENT TOOLS
IPW relies heavily on standard UNIX program development tools, including:

• make, for coordinating program compilation and installation;

• lint , for checking the portability and type-correctness of C source code;

• RCS, for maintaining multiple revisions of IPW source files33.

33 RCS, though currently not part of any commercial UNIX system, is freely available in source

form.

- 151 -

IPW provides initialization files and shell script ‘‘wrappers’’ for these utilities to sim-
plify their use by IPW application programmers.

Perhaps the most useful tools provided to an IPW programmer are the large body
of existing header files and library functions, all available online in source as well as
object form. Any IPW programmer should refer regularly to the contents of $IPW/h (for
header files) and $IPW/src/lib/libipw (for the libipw library routines).

6.4.1. ipwmake
All IPW script, programs, and libraries are compiled and installed using ipwmake ,

which is an IPW-specific ‘‘front-end’’ for the UNIX make command [Feldman 1979].
ipwmake standardizes the vast majority of options and rules normally required in a
Makefile ; instead, the programmer supplies a far simpler Makedefs file, which
ipwmake incorporates into a much more elaborate, invisible Makefile that is actually
fed to the make command.

Most of the information needed by ipwmake in order to construct a Makefile is
kept in a set of configuration files in the directory $IPW/lib/make The configuration
files are usually tailored for a specific IPW installation once, by the IPW administra-
tor34, and do not normally need to be accessed by an IPW application programmer.
However, application programmers should be aware of the system dependencies
accounted for in these files, so they do not build redundant complexity into their own
Makedefs files. System dependencies handled by the configuration files include:

• all path name dependencies (e.g., destination directories, paths to #include files,
etc.);

• appropriate compiler options for optimization, profiling, and debugging;

• presence or absence of specific hardware (e.g., MC6888x math coprocessor on
Motorola MC680x0 systems).

Given the amount of ‘‘canned’’ information in $IPW/lib/make , an actual Make-
defs file is quite simple. Here is a sample Makedefs file for the mstats command:

PGM= mstats
OBJS=\

accum.o headers.o init.o main.o mcov.o mstats.o parm.o

SRCS=\
accum.c headers.c init.c main.c mcov.c mstats.c parm.c

default: pgm
install: install-pgm

$(OBJS): pgm.h

$Header: Makedefs,v 1.1 90/02/16 15:31:25 frew Exp $

This represents the minimum information required in a Makedefs file for a compiled
program (i.e., primitive). The macro definitions should be self-explanatory; they indi-
cate the program name, constituent object files, and constituent source files,

34 See §8.5.

- 152 -

respectively.

The default target indicates the action to perform if ipwmake is invoked without
a command-line target. Possible actions for the default target are:

lib : create or update an object library from C sources;

pgm: compile and link a primitive from C sources;

script : install a shell script.

The install target indicates the action to perform if ipwmake is invoked with
the command-line target install . The possible actions are the same as for default ,
with the phrase install- prepended. Other standard targets, that need not be speci-
fied in Makedefs ; include:

clean : delete any files that ipwmake knows how to rebuild (e.g., $(OBJS)).

lint : run lint , with appropriate options, on $(SRCS) .

By default, when ipwmake compiles source files or links programs, it uses a stan-
dard set of optimization options (e.g., -O). This may be changed by the following
command-line options to ipwmake :

-D : compile sources with debugging options, and link programs with debugging
libraries;

-P : compile sources with profiling options, and link programs with profiling
libraries.

Skeletal Makedefs files for primitives, shell scripts, and libraries may be found in
subdirectories of $IPW/skel .

6.4.2. ipwlint
IPW programmers are encouraged to use lint [Johnson 1978] to verify their C

source code. There are two important reasons for this:

• Since C normally does no intermodule type checking, use of lint is the only way
to guarantee that IPW library functions are being called correctly.

• Source-level portability is an important IPW design goal, and lint catches many
nonportable constructs that a C compiler might accept.

The ipwlint command, or the lint target in ipwmake , are used to run lint on IPW
source code, using the appropriate local lint options and libraries. The -D option to
either of these commands invokes a more-than-usually strict set of lint options.

Users of lint know that some messages it generates are inherently superfluous,
such as complaining about casting pointers returned by memory allocation functions.
In IPW source code, statements known to generate such messages should be preceded
by a /*NOSTRICT*/ comment (see §A.2). Such a comment was specified in the original
description of lint to have the effect of disabling type checking for the subsequent
expression, although to our knowledge, this feature was never implemented in any
standard version of lint . Nonetheless, it is an acceptable way to indicate to human
readers of IPW source code that the author was aware of the alleged nonportability of a
particular construct, and has determined that the lint warning should be ignored.

The IPW administrator has the option of installing lint libraries for each IPW
function library. If these libraries exist they will be consulted. It should be noted,
however, that the procedures for creating lint libraries are inherently nonportable35,

35 Some may find this ironic, since lint is intended to promote portability ...

- 153 -

and may not have been implemented at any given IPW installation. As ANSI-
conforming C compilers become more widespread, IPW will eventually be converted to
use ANSI C function prototypes [ANSI 1989] , which will obviate the need for lint
libraries.

6.5. COMMENTARY
The programmer’s interface to IPW reflects two basic aspects of the software’s

structure. First, the overall design of IPW at the module level has been data-driven,
in the sense that the packaging of the functions reflects the flow of image data through
an IPW program. The uio , pixio , and fpio function packages implement successive
layers of processing on the binary pixel data. A similar hierarchy exists for the image
header data, corresponding to text lines, then parsed header tokens, and finally a
filled-in data structure for each ingested header.

Secondly, the programmer’s interface is strongly influenced by each IPW command
being a stand-alone UNIX program. This requires some additional effort on the part of
the programmer to set up a new command, when compared against the effort required
to add a new function to a self-contained, monolithic software system. A good example
of this extra effort is the initialization of the structures in the main function that
specify the command line arguments expected by the program, and the subsequent
function calls required to obtain these arguments.

- 154 -

CHAPTER 7: PROGRAMMER’S MANUAL

This chapter contains terse but complete references for all IPW library routines
and header files used by IPW application programmers. Documentation is also included
for IPW commands used exclusively to support program development. Taken together,
the features described in this chapter constitute the primary programmer interface to
IPW.

7.1. PROGRAMMER COMMANDS
This section contains copies of the on-line documentation for each IPW command

used to support program development. The format of this documentation is described
in §5.2 and §A.1.1.1.

- 155 -

ATOB ATOB

NAME
atob -- convert text integers to binary

SYNOPSIS
atob [-1] [-2] [-4] [file ...]

DESCRIPTION
atob reads text integers from {file} (default: standard
input) and writes their binary equivalents on the standard
output. If more than one {file} are specified, then they
are read in sequence.

OPTIONS
-1 Convert input to 1-byte integers (C type: char).

-2 Convert input to 2-byte integers (C type: short).

-4 Convert input to 4-byte integers (C type: long).

Exactly one of -1, -2, or -4 must be specified.

DIAGNOSTICS
{file}: bad input

An input value could not be converted to an
integer.

EXAMPLES
To convert 256 text integers to an IPW lookup table:

atob -1 | mkbih -l 1 -s 256 -y 1

SEE ALSO
IPW: btoa

NOTES
atob is not an IPW program, but is provided with IPW for use
in shell scripts.

Negative input values, or input values too large to be
represented in the specified number of output bytes, will be
converted to binary in a machine-dependent fashion.

atob will be renamed text2bin.

- 156 -

BTOA BTOA

NAME
btoa -- convert binary integers to text

SYNOPSIS
btoa [-1] [-2] [-4] [file ...]

DESCRIPTION
btoa reads binary integers from {file} (default: standard
input) and writes their text equivalents on the standard
output, one value per line. If more than one {file} are
specified, then they are read in sequence.

OPTIONS
-1 Convert 1-byte input integers (C type: char).

-2 Convert 2-byte input integers (C type: short).

-4 Convert 4-byte input integers (C type: long).

EXAMPLES
To print the first 200 quantized pixel values from an IPW
image with 2-byte pixels:

rmhdr | btoa -2 | head -100

SEE ALSO
IPW: atob, rmhdr

NOTES
btoa is not an IPW program, but is provided with IPW for use
in shell scripts.

Input values are assumed to be unsigned.

btoa will be renamed text2bin.

- 157 -

INSTALL INSTALL

NAME
install -- install commands, libraries, etc.

SYNOPSIS
install [-c] [-m mode] [-o owner] [-g group] [-s]

file destination

DESCRIPTION
install moves (or copies: see option "-c" below) {file} to
{destination}, optionally changing its owner, group, or
protection. If {destination} is a directory, {file} will be
placed in that directory.

OPTIONS
-c "cp" {file} to {destination} (default: use "mv").

-m Set protection of installed file to {mode} (default:
same as {file}).

-o Set owner of installed file to {owner} (default:
same as {file}).

-g Set group of installed file to {group} (default:
same as {file}).

-s Strip symbol table from installed file (default:
don’t). This only makes sense if {file} is a
compiled executable program.

EXAMPLES
(install is almost always invoked indirectly via ipwmake.)

SEE ALSO
IPW: ipwmake

UNIX: chgrp, chown, cp, install, mv, strip

- 158 -

INSTALL INSTALL

NOTES
install is a substitute for a UNIX command of the same name,
that often requires special privileges to use.

The -o option may fail unless the invoker has "root"
privileges.

The -g option may fail unless the invoker is a member of
"group". On some UNIX systems, the group of the installed
file will automatically be changed to that of the
destination directory.

- 159 -

IPWLINT IPWLINT

NAME
ipwlint -- run lint on specific IPW source files

SYNOPSIS
ipwlint [options ...] file ...

DESCRIPTION
ipwlint runs the UNIX C source code checker "lint" on the
specified IPW source {file}s.

The OPTIONS, DIAGNOSTICS, and FILES are the same as for
ipwmake.

EXAMPLES

SEE ALSO
IPW: ipwmake

UNIX: lint, make

NOTES
The use of ipwlint is discouraged -- it is much safer to
use the command:

ipwmake [options ...] lint

which checks all of the source files mentioned in the
"Makedefs" file in the current directory.

Lint’s behavior varies wildly across UNIX implementations.
Many lint diagnostics are totally spurious, and the absence
of lint diagnostics is no guarantee of portability.

- 160 -

IPWMAKE IPWMAKE

NAME
ipwmake -- IPW "make" command

SYNOPSIS
ipwmake [-D] [-P] [option ...] [target ...]

DESCRIPTION
ipwmake is a front-end for the UNIX "make" command.

ipwmake constructs a makefile for an IPW program or library
from generic files in the directory $IPW/lib/make, plus a
minimum of specific information in a "Makedefs" file in the
current directory. The make command is then invoked with
this makefile, and any {option}s and {target}s specified on
the ipwmake command line.

The makefile created by ipwmake always contains the following
targets:

default Build the command or library whose source is
in the current directory. This is the
default target if none is specified.

install Move the command or library to its
destination directory.

clean Delete any files in the current directory
that can be reconstructed from source
files.

In directories containing C source files, the "lint" target
will run the lint utility on those files, sending the
diagnostics to the standard output.

There are other standard targets which are less commonly
used; see $IPW/lib/make/rules.

If the environment variable MAKEDEFS is set, then the file
it names is used in place of the default "Makedefs" file.
In particular, setting MAKEDEFS to "-" causes ipwmake to
read control information from its standard input.

- 161 -

IPWMAKE IPWMAKE

OPTIONS
-D Compile target for debugging: use debugging options

when compiling and linking, and link against IPW
libraries compiled with these options.

-P Compile target for profiling: use profiling options
when compiling and linking, and link against IPW
libraries compiled with these options.

Only one of -D or -P may be specified. If neither are
specified, the default compile options usually invoke an
optimizer, and the default libraries are usually those whose
members were compiled with an optimizer.

DIAGNOSTICS
no Makedefs file

There is no "Makedefs" file in the current
directory.

FILES
./Makedefs

specific information about targets in the current
directory.

$IPW/lib/make/local locally-tuned macros
$IPW/lib/make/std standard macros
$IPW/lib/make/debug debugging macros
$IPW/lib/make/profile profiling macros
$IPW/lib/make/rules rules

$IPW/skel/lib/Makedefs
$IPW/skel/pgm/Makedefs
$IPW/skel/sh/Makedefs

skeleton "Makedefs" files for object libraries,
executable programs, and shell scripts.

- 162 -

IPWMAKE IPWMAKE

EXAMPLES
The following is the "Makedefs" file for the "mux" command:

PGM=mux
OBJS=\

main.o mux.o muxhdrs.o muximg.o

SRCS=\
main.c mux.c muxhdrs.c muximg.c

default: pgm
install: install-pgm

$(OBJS): $(PGM).h

Typing

ipwmake install clean

in the directory containing this file will:

- create the object files main.o, mux.o, muxhdrs.o, and
muximg.o, by individually compiling the corresponding
source files;

- link the object files with the appropriate IPW and UNIX
libraries to create the executable file "mux";

- move "mux" to the default IPW executable directory
(usually $IPW/bin), strip its symbol table, and set
appropriate permissions;

- delete the object files.

SEE ALSO
IPW: ipwlint, objs

UNIX: make

NOTES
Only a sampling of ipwmake’s capabilities can be given
here. The generic control files in $IPW/lib/make, and the
skeleton files $IPW/skel/*/Makedefs, should be consulted for
further information.

- 163 -

MC MC

NAME
mc -- multi-column output filter

SYNOPSIS
mc [-w width] [file ...]

DESCRIPTION
mc reads text lines from {file} (default: standard input)
and writes them in multiple columns on the standard output,
in column-major order (i.e. the first input lines appear in
the first column of output). If multiple {file}s are
specified, then they are read in sequence.

OPTIONS
-w Output lines shall contain no more than {width}

characters (default: 80, or the width of the
display, if the output is a terminal device). The
terminating newline is counted as 1 character.

DIAGNOSTICS
{width}: bad width

The specified {width} is less than 8 columns.

{inwidth}-col input too wide for {outwidth}-col output

An input line is too wide for the specified (or
default) output width.

EXAMPLES
To generate a multi-column listing of the files in the
current directory:

ls | mc

SEE ALSO
UNIX: ls

NOTES
mc is not an IPW command, but is provided with IPW for use
in shell scripts.

mc was originally written (and posted to USENET) by Dan
Ts’o, Dept.of Neurobiology, Rockefeller Univ.

- 164 -

OBJS OBJS

NAME
srcs -- show potential IPW source files
objs -- show potential IPW object files

SYNOPSIS
srcs [dir ...]
objs [dir ...]

DESCRIPTION
srcs displays on the standard output the names of the IPW
source files in the specified directories (default: current
directory).

objs displays the same file names, but with a ".o" suffix
instead of the source language suffix (e.g., ".c").

These commands are typically invoked while editing an
ipwmake "Makedefs" file, to initialize the "SRCS" and "OBJS"
macros.

FILES
*.[cfF]

possible source files

$IPW/skel/lib/Makedefs
$IPW/skel/pgm/Makedefs

skeleton "Makedefs" files, containing instructions
for the use of the srcs and objs commands from
within the vi editor.

EXAMPLES
The command sequence:

cd $IPW/src/bin/mux
objs

displays:

main.o mux.o muxhdrs.o muximg.o

SEE ALSO
IPW: ipwmake

UNIX: sed

NOTES

- 165 -

7.2. LIBRARY FUNCTIONS
This section contains copies of the on-line documentation for the IPW library func-

tions most often used in application programs. The format of this documentation is
described in §5.2 and §A.1.1.2.

Certain of the image header manipulation routines are similar enough that they
have been documented in terms of a single routine pertaining to an imaginary ‘‘XX’’
header. Documentation for such routines should be understood to apply to a separate
instance of the routine for each supported IPW header type; e.g., the documentation for
xxhdup applies to the functions bihdup , lqhdup , etc.

All functions that accept file descriptor arguments cause assertion violations if the
value of the file descriptor is outside the valid range for the host environment. Func-
tions that perform I/O cause assertion violations if the file accessed by the file descrip-
tor has not be opened for reading or writing, as appropriate.

- 166 -

ADDSV ADDSV

NAME
addsv, delsv, dupsv, walksv -- manipulate string vectors

SYNOPSIS
STRVEC_T *addsv(p, s)
STRVEC_T *p;
char *s;

STRVEC_T *delsv(p, i)
STRVEC_T *p;
int i;

STRVEC_T *dupsv(p)
STRVEC_T *p;

char *walksv(p, reset)
STRVEC_T *p;
bool_t reset;

DESCRIPTION
These routines manipulate string vectors. A string vector
is a linked list of arbitrary-length character strings.

addsv appends a copy of the EOS-terminated string pointed to
by {s} to the string vector pointed to by {p}. If {p} is
NULL, then a new string vector is created with {s} as its
first string.

delsv deletes the {i}’th string from the string vector
pointed to by {p}.

dupsv duplicates the string vector pointed to by {p}.

walksv sequentially accesses the strings in the string
vector pointed to by {p}. If {reset} is TRUE, then the
first string is accessed. If {reset} is FALSE, then the
next string is accessed.

RETURN VALUE
success: pointer to the new, current, or duplicate string

vector, or to the current string.

failure: NULL

- 167 -

ADDSV ADDSV

APPLICATION USAGE
The most frequent use of string vectors in application
programs is to pass an arbitrary number of strings via a
single argument to a library function. For example, the
following string vector:

STRVEC_T *annot;
...
annot = addsv((STRVEC_T *) NULL,

"image analyzed by A. Hacker");
annot = addsv(annot,

"showing extent of medfly damage");

could be passed to the bihmake function, causing both
strings to appear as separate annotation strings in the
newly created basic image header.

SEE ALSO
IPW: bihmake

NOTES
delsv does not return an error indication if the {i}’th
string doesn’t exist.

Interspersing calls to addsv or delsv with calls to walksv
may confuse walksv’s notion of what the "next" string is.
Calling walksv with {reset} == TRUE always works.

- 168 -

ALLOCND ALLOCND

NAME
allocnd --- allocate a multidimensional array

SYNOPSIS
addr_t allocnd(elsize, ndim, dim1, ..., dimn)
int elsize, ndim, dim1, ..., dimn;

DESCRIPTION
allocnd dynamically allocates an {ndim}-dimensional array,
where sizeof(each element) is {elsize}. The particular
dimensions are given by the {dim1}, ..., {dimn} arguments.
The returned address should be cast into a pointer to the
proper type of object.

The dynamically allocated array is indexed via dope vectors
(i.e., all but the rightmost dimension are implemented by
arrays of pointers).

All space allocated by allocnd is initialized to 0. The
memory occupied by array data (as opposed to the dope
vectors) will be logically contiguous, so the address of the
first element in the array may also be treated as the base
address of a single 1-dimensional array.

RETURN VALUE
success: a pointer to the newly-allocated array

failure: NULL

ERRORS
size overflow during allocation

The total number of data bytes in the array could
not be expressed as an int.

APPLICATION USAGE
Use allocnd() as a general-purpose multidimensional array
allocator. For example:

double a[3][4];
double **b;

b = (double **)allocnd(sizeof(double), 2, 3, 4);

References of the form b[i][j] will behave equivalently to
a[i][j].

- 169 -

ALLOCND ALLOCND

SEE ALSO
IPW: ecalloc

UNIX: malloc

NOTES
Because of the extra space required for the dope vectors,
arrays allocated by allocnd() will consume more memory than
equivalently-dimensioned arrays allocated statically.

- 170 -

BIHMAKE BIHMAKE

NAME
bihmake -- make a basic image (BI) header

SYNOPSIS
#include "bih.h"

BIH_T *bihmake(nbytes, nbits, history, annot, bihp,
nlines, nsamps, nbands)

int nbytes, nbits, nlines, nsamps, nbands;
STRVEC_T *history, *annot;
BIH_T *bihp;

DESCRIPTION
bihmake allocates a single-band basic image (BI) header.
The header is initialized from bihmake’s arguments:

{nbytes} number of bytes per pixel. If {nbytes} is
zero, it will be made just large enough to
contain {nbits}.

{nbits} number of bits per pixel. If {nbits} is
zero, it will be set to ({nbytes} *
CHAR_BIT).

(i.e., {nbytes} and {nbits} cannot BOTH be zero.)

{history} pointer to a vector of strings to be used as
history records in this header.

{annot} pointer to a vector of strings to be used as
annotation in this header.

{bihp} pointer to another BI header. If {bihp} is
non-null, then the per-image component of
*{bihp} will be linked into the new header.

{nlines}, {nsamps}, and {nbands} are ignored if {bihp} is
non-null.

{nlines} number of lines per image

{nsamps} number of samples per image line

{nbands} number of bands per image sample

- 171 -

BIHMAKE BIHMAKE

RETURN VALUE
success: pointer to new BI header

failure: NULL

SEE ALSO
IPW: addsv, mkbih, xxhmake

NOTES
The sharing of a "per-image" component is unique to the BI
header -- all other IPW headers are strictly per-band.

- 172 -

BOIMAGE BOIMAGE

NAME
boimage -- mark end of headers on output image

SYNOPSIS
#include "hdrio.h"

int boimage(fd)
int fd;

DESCRIPTION
boimage writes an "image preamble" to the output image
accessed via file descriptor {fd}, which marks the
transition from header to pixel data.

RETURN VALUE
success: OK

failure: ERROR

APPLICATION USAGE
You must call boimage after all headers, and before any
pixels, are written to an output image.

SEE ALSO
IPW: gethdrs, skiphdrs, xxhwrite

NOTES
boimage is currently implemented as a macro.

- 173 -

DTOA DTOA

NAME
dtoa, ftoa, itoa, ltoa -- convert numbers to strings

SYNOPSIS
char *dtoa(s, n)
char *s;
double n;

char *ftoa(s, n)
char *s;
float n;

char *itoa(s, n)
char *s;
int n;

char *ltoa(s, n)
char *s;
long n;

DESCRIPTION
These functions write the ASCII representation of {n},
followed by an EOS (’ ’), into the character array pointed
to by {s}.

RETURN VALUE
{s}

SEE ALSO
UNIX: sprintf

NOTES
The array pointed to by {s} must be large enough to hold the
ASCII representation of {d}, plus a trailing EOS. The
consequences of overflowing {s} are unpredictable.

- 174 -

ECALLOC ECALLOC

NAME
ecalloc -- memory allocator

SYNOPSIS
addr_t ecalloc(nelem, elsize)
int nelem, elsize;

DESCRIPTION
ecalloc is the IPW interface to the standard C library
function calloc.

ecalloc returns a pointer to enough contiguous memory to
hold {nelem} {elsize}-byte objects. The memory is
initialized to zeros.

RETURN VALUE
success: pointer to allocated memory.

failure: NULL

APPLICATION USAGE
IPW programs should call ecalloc wherever they would
otherwise call malloc or calloc.

SEE ALSO
IPW: allocnd, usrerr

UNIX: malloc

NOTES
ecalloc is a "wrapper" around the calloc function that:

- verifies that {nelem} and {elsize} are both > 0.

- makes system error information available to the IPW error
function if the allocation fails (the programmer must
still call error explicitly).

- 175 -

ERROR ERROR

NAME
error, warn -- IPW error handlers

SYNOPSIS
void error(format, ...)
char *format;

void warn(format, ...)
char *format;

DESCRIPTION
These functions print the error message described by the
printf-style {format}, and optional additional arguments, on
the standard error output. If usrerr has been called, its
argument is also printed. If syserr has been called, a UNIX
system error message is also printed.

error causes program termination after the error messages
have been printed.

APPLICATION USAGE
error is the most common IPW error handler. A typical usage
would be:

fd = uropen(filename);
if (fd == ERROR) {

error("can’t open %s", filename);
}

which would produce the following standard error output:

{program}: ERROR:
can’t open "{filename}"
(UNIX error is: {perror-message})

and then cause the program to terminate.

warn is used to notify the user of unusual conditions that
do not affect program execution, but may produce unexpected
output; e.g., an insufficient number of bits per input pixel
to satisfy the precision requirements of a particular
algorithm.

SEE ALSO
IPW: ipwenter, usrerr

UNIX: errno, perror

- 176 -

ERROR ERROR

NOTES
These functions both call the low-level function _error,
which does the actual error message formatting and output.

- 177 -

FPMAP FPMAP

NAME
fpmap, fpmaplen, fpfmax, fpfmin --

access to floating-point conversion parameters

SYNOPSIS
#include "fpio.h"

fpixel_t **fpmap(fd)
int fd;

int *fpmaplen(fd)
int fd;

fpixel_t *fpfmax(fd)
int fd;

fpixel_t *fpfmin(fd)
int fd;

DESCRIPTION
These functions provide access to the fpio subsystem
parameters that control the conversion between integer and
floating-point pixel values.

fpmap returns a pointer to an array of pointers to the type
conversion arrays associated with the image accessed by file
descriptor {fd}. The array indices are unsigned integer
(pixel_t) pixel values, and the array elements are the
corresponding floating point (fpixel_t) pixel values. There
is a separate array for each image band.

fpmaplen returns a pointer to an array containing the
lengths of the type conversion arrays associated with the
image accessed by file descriptor {fd}. The array indices
are band numbers: the value of the i’th element of the
array pointed to by the value of fpmaplen is the length of
the i’th array pointed to by the value of fpmap. fpmaplen
is necessary since the lengths of the conversion arrays vary
according to the number of significant bits per integer
pixel in each band.

fpfmin and fpfmax return pointers to arrays of the maximum
or minimum floating-point pixel values in the image accessed
by file descriptor {fd}. The arrays indices are band
numbers.

- 178 -

FPMAP FPMAP

RETURN VALUE
success: pointer to the particular fpio data structure

failure: NULL

GLOBALS ACCESSED
_fpiocb[fd] fpio control block for file descriptor {fd}

APPLICATION USAGE
Application programs typically use these functions to modify
the existing conversion(s) between integer and floating-
point pixel values.

SEE ALSO
IPW: fpvread, lqhmake, lqhx, mklqh, mnxfp

NOTES
If these functions are called BEFORE any LQ headers are read
from or written to {fd}, then they will cause the default
(1:1) conversion between integer and floating-point pixel
values to be established, which will be UNAFFECTED by any
subsequent LQ header I/O on {fd}.

- 179 -

FPVREAD FPVREAD

NAME
fpvread, fpvwrite -- floating-point pixel I/O

SYNOPSIS
#include "fpio.h"

int fpvread(fd, buf, npixv)
int fd, npixv;
fpixel_t *buf;

int fpvwrite(fd, buf, npixv)
int fd, npixv;
fpixel_t *buf;

DESCRIPTION
These routines are analogous to pvread and pvwrite, except
that instead of operating on integer pixel values, they
represent pixel values as the floating-point type fpixel_t.

fpvread reads {npixv} floating-point pixel vectors from the
image accessed by file descriptor {fd} into the buffer
pointed to by {buf}.

fpvwrite writes {npixv} floating-point pixel vectors from
the buffer pointed to by {buf} to the image accessed by file
descriptor {fd}.

If an LQ header has been read from or written to {fd}, then
the pixel values are converted between integer and
floating-point representations according to the mapping
specified in the LQ header. Otherwise, the conversion is
1:1; i.e., an integer pixel value of 123 is mapped into a
floating-point value of 123.0, and vice versa.

RETURN VALUE
success: number of floating-point pixel vectors read or

written

failure: ERROR

GLOBALS ACCESSED
_fpiocb[fd] fpio control block for file descriptor {fd}

- 180 -

FPVREAD FPVREAD

APPLICATION USAGE
It is often necessary for applications to treat pixels as
floating-point quantities, either because they represent
some "real world" quantity (e.g., elevation, solar
irradiance, etc.), or because an algorithm is more easily
implemented for floating-point than for integer quantities.

Note that the application can control the mapping between
integer and floating-point values by whether it allows an LQ
header to be read from or written to a particular file
descriptor.

SEE ALSO
IPW: fpmap, lqhmake, lqhx, mklqh, mnxfp, pvread, uread,

uropen

NOTES
It is important to remember that the {npixv} argument to
these functions is the number of floating-point pixel
VECTORS to be read or written, and that the corresponding
number of INDIVIDUAL PIXELS is {npixv} * (number of bands
per image sample).

Calls to fpio, pixio, and uio I/O functions should not be
intermixed on the same file descriptor.

- 181 -

FRAND FRAND

NAME
frand, frinit -- uniform random number generator

SYNOPSIS
float frand()

void frinit()

DESCRIPTION
frand returns a uniform random number from the range [0,1).

frinit initializes frand’s random number generator with a
"seed" derived from the current system time-of-day. If
frinit is not called, then successive calls to frand will
return the same "random" sequence for each program
invocation.

RETURN VALUE
the next random number

SEE ALSO
UNIX: random

- 182 -

GEOHMAKE GEOHMAKE

NAME
geohmake -- make a geodetic (GEO) header

SYNOPSIS
#include "geoh.h"

GEOH_T *geohmake(bline, bsamp, dline, dsamp, units, csys)
double bline, bsamp, dline, dsamp;
char *units, *csys;

DESCRIPTION
geohmake allocates a single-band geodetic (GEO) header. The
header is initialized from geohmake’s arguments:

{bline} geodetic coordinate of image line 0

{bsamp} geodetic coordinate of image sample 0

{dline} geodetic distance between image lines

{dsamp} geodetic distance between image samples

{units} units in which geodetic coordinates are
expressed (e.g., "meters").

{csys} name of geodetic coordinate system (e.g.,
"UTM").

RETURN VALUE
success: pointer to new GEO header

failure: NULL

SEE ALSO
IPW: mkgeoh, window, xxhmake

NOTES
There are not yet any standard values for {units} and
{csys}.

- 183 -

GETHDRS GETHDRS

NAME
gethdrs -- process image headers

SYNOPSIS
#include "gethdrs.h"

void gethdrs(fdi, request, nbands, fdo)
int fdi, nbands, fdo;
GETHDR_T **request;

DESCRIPTION
gethdrs provides a high-level interface to the IPW xxhread
routines. Image headers are read from file descriptor {fdi}
and written to file descriptor {fdo}, subject to the
interpretation of {request} and {nbands}.

{request} points to an array of pointers to GETHDR_T
structures. The last element in the array must be a null
pointer.

Each GETHDR_T structure specifies the disposition of a
particular type of image header. The first two fields of
the structure should be initialized to the name of the
header to be processed, and a pointer to the header’s ingest
routine. If the ingest routine pointer is NULL, then the
header will be skipped; otherwise, the header will be
ingested and its address will be available via the hdr_addr
macro when gethdrs returns. Ingested headers are not
written to {fdo}.

Headers that are not mentioned in the structures pointed to
by {request}, and that pertain to band numbers less than
{nbands}, are copied to file descriptor {fdo}. You must
therefore read the BI header from {fdi}, and write a BI
header to {fdo}, before calling gethdrs.

If {nbands} is set to the macro NO_COPY, then NO headers
will be written to {fdo}.

- 184 -

GETHDRS GETHDRS

APPLICATION USAGE
In the following code fragment, we have arranged to ingest
an LQ header, skip an OR header, and copy any other headers
encountered to fdo. Note that we must explicitly write an
LQ header if we want one to be placed in the output image.
The GETHDR_T structures and the {request} array are declared
static so that the may be initialized.

static GETHDR_T h_lqh = {LQH_HNAME,
(ingest_t) lqhread};

static GETHDR_T h_orh = {ORH_HNAME};
static GETHDR_T *request[] = {&h_lqh, &h_orh, NULL};
...
i_bihpp = bihread(i_fd);
...
bihwrite(o_fd, o_bihpp);
gethdrs(i_fd, request, bih_nbands(o_bihpp), o_fd);
i_lqhpp = (LQH_T **) hdr_addr(h_lqh);
...
lqhwrite(o_fd, o_lqhpp);
boimage(o_fd);

SEE ALSO
IPW: boimage, ipwenter, skiphdrs, xxhread, xxhwrite

NOTES
gethdrs terminates program execution with an error message
if any errors are encountered.

- 185 -

HBIT HBIT

NAME
hbit -- find highest-order 1 bit in an integer

SYNOPSIS
int hbit(arg)
unsigned arg;

DESCRIPTION
hbit finds the index (1-relative) of the highest-order 1 bit
in {arg}.

RETURN VALUE
the index of the highest-order 1 bit in {arg}. If {arg} is
0 then 0 is returned.

APPLICATION USAGE
The value of hbit may be interpreted as the minimum number
of bits needed to represent {arg}.

- 186 -

HDRALLOC HDRALLOC

NAME
hdralloc -- allocate memory for image header components

SYNOPSIS
addr_t hdralloc(nelem, elsize, fd, hname)
int n, size, fd;
char *hname;

DESCRIPTION
hdralloc is a special interface to the ecalloc function, for
allocating the components of an image header data structure.

Like ecalloc, hdralloc returns a pointer to enough
contiguous memory to hold {nelem} {elsize}-byte objects.
The memory is initialized to zeros.

Unlike ecalloc, hdralloc terminates program execution if it
is unable to allocate the memory requested. Prior to
termination, {hname} is passed to the usrerr function, and
{fd} (if it is a valid file descriptor) is passed to the
uferr function. {hname} is usually the macro XXH_HNAME, as
defined in the header’s xxh.h file, which {fd} is the file
descriptor of the image to which the header will be
written. Pass ERROR as the value of {fd} if you want
hdralloc to ignore it.

If hdralloc returns successfully, then {fd} and {hname} are
ignored.

RETURN VALUE
pointer to allocated memory

ERRORS
can’t allocate "{name}" header
can’t allocate array of "{name}" header pointers

APPLICATION USAGE
In application programs, hdralloc is usually called to
allocate an array of pointers to the headers associated with
each image band. See the documentation for xxhmake for an
example.

SEE ALSO
IPW: ecalloc, xxhmake

- 187 -

HNBYTES HNBYTES

NAME
hnbytes, hnbits -- image pixel size parameters

SYNOPSIS
int hnbytes(fd, band)
int fd, band;

int hnbits(fd, band)
int fd, band;

DESCRIPTION
These functions return the number of bytes or bits in a
single pixel of band {band} in the image accessed by file
descriptor {fd}.

RETURN VALUE
number of bytes or bits per pixel

GLOBALS ACCESSED
_bih[fd] BIH associated with file descriptor fd

APPLICATION USAGE
In an application program, an image’s file descriptor
typically has a much broader scope than the image’s BIH
pointer. Therefore, these functions allow the per-band
parameters normally accessed via the BIH pointer to be
accessed via the file descriptor.

SEE ALSO
IPW: hnlines, imgsize, xxhread, xxhwrite

NOTES
These functions will cause an assertion violation if they
are called before a BIH is read from or written to {fd}.

- 188 -

HNLINES HNLINES

NAME
hnlines, hnsamps, hnbands -- per-image parameters

SYNOPSIS
int hnlines(fd)
int fd;

int hnsamps(fd)
int fd;

int hnbands(fd)
int fd;

DESCRIPTION
These functions return the number of lines, samples per
line, or bands per sample in the image accessed by file
descriptor {fd}.

RETURN VALUE
number of lines, samples, or bands in the image on {fd}

GLOBALS ACCESSED
_bih[{fd}] BIH associated with file descriptor {fd}

APPLICATION USAGE
In an application program, an image’s file descriptor
typically has a much broader scope than the image’s BIH
pointer. Therefore, these functions allow the per-image
parameters normally accessed via the BIH pointer to be
accessed via the file descriptor.

SEE ALSO
IPW: hnbytes, imgsize, xxhread, xxhwrite

NOTES
These functions will cause an assertion violation if they
are called before a BIH is read from or written to {fd}.

- 189 -

HORHMAKE HORHMAKE

NAME
horhmake -- make a horizon (HOR) header

SYNOPSIS
#include "horh.h"

HORH_T *horhmake(azimuth)
double azimuth;

DESCRIPTION
horhmake allocates a single-band horizon (HOR) header. The
header is initialized from horhmake’s arguments:

{azimuth} the azimuth of the image lines, measured in
radians counterclockwise from the south.

RETURN VALUE
success: pointer to new HOR header

failure: NULL

ERRORS
horhmake: abs(azm) ({azimuth}) > pi

{azimuth} is outside the range [-PI..PI].

SEE ALSO
IPW: horizon, xxhmake

- 190 -

IMGCOPY IMGCOPY

NAME
imgcopy -- copy all pixel data between image files

SYNOPSIS
int imgcopy(i_fd, o_fd)
int i_fd, o_fd;

DESCRIPTION
imgcopy copies all of the pixel data from the image accessed
by file descriptor {i_fd} to the image accessed by file
descriptor {o_fd}.

RETURN VALUE
success: OK

failure: ERROR

ERRORS
can’t calculate input image size

The total number of bytes in the input image won’t
fit in a signed long integer.

input image larger than header indicates

An end-of-file was NOT detected on {i_fd} after the
appropriate number of bytes were copied.

APPLICATION USAGE
imgcopy is typically called by programs that add, delete, or
modify an image’s headers, but just pass image data through
unaltered.

SEE ALSO
IPW: imgsize, ucopy

NOTES
imgcopy will cause an assertion violation if it is called
before a BIH is read from {i_fd} or written to {o_fd}.

- 191 -

IMGSIZE IMGSIZE

NAME
imgsize, sampsize -- size of entire image or single sample

SYNOPSIS
#include "bih.h"

long imgsize(fd)
int fd;

int sampsize(fd)
int fd;

DESCRIPTION
imgsize computes the total number of image data (pixel)
bytes in the image accessed by file descriptor {fd}.

sampsize computes the total number of bytes in a single
sample of the image accessed by the file descriptor {fd}.

RETURN VALUE
total number of pixel bytes in the image, or in a single
image sample

GLOBALS ACCESSED
_bih[{fd}] BIH associated with file descriptor {fd}

APPLICATION USAGE
imgsize is useful only to programs that are copying all of
the pixel data from an input IPW image to an output non-IPW
image, in which case imgsize can provide the {ncopy}
argument required by the ucopy function. If the output
image has an IPW BIH, then imgcopy should be used instead of
ucopy.

sampsize is useful to programs that do not need to interpret
image pixel values, but do need access to individual samples
(e.g. flip, transpose, window, etc.)

SEE ALSO
IPW: hnlines, hnbytes, imgcopy, ucopy, xxhread, xxhwrite

- 192 -

IMGSIZE IMGSIZE

NOTES
These functions will cause an assertion violation if they
are called before a BIH is read from or written to {fd}.

The value returned by imgsize does NOT include the bytes
occupied by header data; e.g., for an image with 512 lines,
512 samples, 1 band, and 1 byte per pixel, the value
returned by imgsize will be 262,144 (512*512).

- 193 -

IPWENTER IPWENTER

NAME
ipwenter -- initialize an IPW main program

SYNOPSIS
#include "getargs.h"

void ipwenter(argc, argv, optv, descrip)
int argc;
char **argv, *descrip;
OPTION_T *optv[];

DESCRIPTION
ipwenter is called to initialize an IPW main program. Its
chief function is to parse the command-line arguments in
{argv} The caller provides, via {optv}, descriptions of each
option that the program is prepared to accept, including the
number and type of any "optargs" (option arguments) allowed
for each option.

The string {descrip} should be a one-line description of the
function of the program; it is saved externally for future
usage message generation.

ERRORS
Too numerous to list. Basically, any incorrect command line
causes ipwenter to terminate program execution with an
explanatory diagnostic.

GLOBALS ACCESSED
_argv set to {argv}

_descrip set to {descrip}

_optv set to {optv}

These globals are used by the error handling subsystem to
construct standard-format error messages.

- 194 -

IPWENTER IPWENTER

APPLICATION USAGE
A call to ipwenter must be the first executable statement in
an IPW main program. Since the calling sequence of ipwenter
is rather complicated, the following example is presented.

All C programs running in a UNIX environment have access to
their command line arguments via the parameters {argc} and
{argv}, which are passed to the program’s main function:

main(argc, argv)
int argc;
char **argv;

{
...

The application programmer specifies each option that the
program is prepared to accept with an "option descriptor".
An option descriptor is a structure containing the following
fields, in order:

field type default
---------------------- ------ --------------------
option letter char (must be specified)

option description string (must be specified)

(The following fields may be omitted if there are no
optargs.)

optarg type macro NO_OPTARGS

optarg description string (must be specified)

required flag macro OPTIONAL

min. number of optargs int 1

max. number of optargs int (unlimited)

The option descriptors are declared static so that they may
be initialized. Here are some sample option descriptors:

This option descriptor specifies the "-a" option, which
takes no arguments:

static OPTION_T opt_a = {
’a’, "(option description)",

};

This option descriptor specifies the "-b" option, which

- 195 -

IPWENTER IPWENTER

takes at least 3 integer arguments:

static OPTION_T opt_b = {
’b’, "(option description)",
INT_OPTARGS, "(arg description)",
OPTIONAL, 3,

};

This option descriptor specifies the "-c" option, which must
be present, and which takes at least 1 real argument,

static OPTION_T opt_c = {
’c’, "(option description)",
REAL_OPTARGS, "(arg description)",
REQUIRED,

};

This option descriptor specifies the "-d" option, which must
be present, and which takes at least 1 and no more than 4
string arguments:

static OPTION_T opt_d = {
’d’, "(option description)",
STR_OPTARGS, "(arg description)",
REQUIRED, 1, 4

};

This option descriptor specifies 0 or more string operands.
The "placeholder" is the single word placed on the synopsis
line in the usage message. {REQUIRED,OPTIONAL} and the
{min,max} number of "arguments" (i.e. operands) are
interpreted analogously to options.

static OPTION_T operands = {
OPERAND, "(operand description)",
STR_OPERANDS, "(placeholder)",

};

Once all of the options and operands have been specified, a
null-terminated array of pointers to the option and operand
descriptors must be constructed. The pointer to the operand
descriptor (if any) must be the last non-null pointer in the
array. Like the option descriptors, this array is declared
static so that it may be initialized:

static OPTION_T *optv[] = {
&opt_a,
&opt_b,
&opt_c,
&opt_d,
&operands,

- 196 -

IPWENTER IPWENTER

0 };

void ipwenter(argc, argv, optv,
"(program description)")

After ipwenter returns, the options are accessible by
applying macros to the option descriptors. These
macros include ({opt} is an option descriptor):

got_opt(opt) TRUE if {opt} was specified on the
command line.

n_args(opt) number of optargs associated with
{opt}.

int_arg(opt, i) integer value of the {i}’th optarg
(0-relative) associated with {opt}.

int_argp(opt) pointer to array of integer-valued
optargs associated with {opt}.

There are also str, long, and real versions of the _arg and
_argp macros.

SEE ALSO
IPW: gethdrs, ipwexit, opt_check

UNIX: getopt

K. Hemenway and H. Armitage, 1984. "Proposed syntax
standard for UNIX system commands". UNIX World,
vol. 1, no. 3, pp. 54-57.

NOTES
The calling program must NOT call UNIX library function
getopt.

Non-string operands (i.e., values other than STR_OPERANDS)
are not yet supported.

- 197 -

IPWEXIT IPWEXIT

NAME
ipwexit -- terminate an IPW program

SYNOPSIS
void ipwexit(status)
int status;

DESCRIPTION
ipwexit terminates the execution of an IPW program. Open
uio files are flushed and closed. {status} is passed to the
operating system via the UNIX system call exit.

APPLICATION USAGE
All IPW application programs should call ipwexit as their
last executable statement.

SEE ALSO
IPW: ipwenter, uclose

UNIX: exit

NOTES
Ipwexit never returns.

- 198 -

LQHMAKE LQHMAKE

NAME
lqhmake -- make a linear quantization (LQ) header

SYNOPSIS
#include "lqh.h"

LQH_T *lqhmake(nbits, nbkpts, ival, fval, units, interp)
int nbits, nbkpts;
pixel_t *ival;
fpixel_t *fval;
char *units, *interp;

DESCRIPTION
lqhmake allocates a single-band linear quantization (LQ)
header. The header is initialized from lqhmake’s
arguments:

{nbits} number of bits per pixel.

{nbkpts} number of breakpoints in the {ival} and
{fval} arrays

{ival} array of {nbkpts} pixel values.

{fval} array of {nbkpts} floating-point values,
corresponding to the values in {ival} (e.g.,
{fval}[i] is the floating-point value that
corresponds to the pixel value {ival}[i].)

{units} string identifying the units in which the
values in {fval} are expressed (e.g., "W
mˆ-2 nmˆ-1 srˆ-1".)

{interp} string identifying the function to used to
interpolate values of {fval} for any pixel
values not specified in {ival}. Possible
values of {interp} are predefined in lqh.h;
e.g., LQH_LIN_INTERP for linear
interpolation.

RETURN VALUE
success: pointer to new LQ header

failure: NULL

- 199 -

LQHMAKE LQHMAKE

ERRORS
LQ header: bad integer breakpoint: {ival[...]}

The specified breakpoint is outside the possible
range of values for {nbits}-bit pixels.

SEE ALSO
IPW: lqhx, mklqh, xxhmake

NOTES
There are not yet any standard values for {units}.

LQH_LIN_INTERP is currently the only defined interpolation
function.

- 200 -

LTOF LTOF

NAME
ltof, ltoi, ltou -- long integers conversions

SYNOPSIS
double ltof(i)
long i;

int ltoi(i)
long i;

unsigned ltou(i)
long i;

DESCRIPTION
These functions normally return the value of {i}. However,
if {i} cannot be EXACTLY represented in the return type,
then program execution terminates with an appropriate error
message.

RETURN VALUE
ltof returns (double) {i}.

ltoi returns (int) {i}.

ltou returns (unsigned) {i}.

ERRORS
{i} won’t fit in a "double"
{i} won’t fit in an "int"
{i} won’t fit in an "unsigned"

APPLICATION USAGE
These functions are useful for catching possible integer
overflow in environments where this would not otherwise
trigger an exception. In particular, the use of these
functions avoids voluminous spurious "lint" warnings when
copying long values to other data types.

SEE ALSO
IPW: dtoa

- 201 -

LTOF LTOF

NOTES
"exactly represented" is tested as follows:

long test;
TYPE rtn;

rtn = i;
test = rtn;

For exact representation, test == i must be true. Note that
in the case of ltof, the test will fail if {i} has more
significant bits than a double’s mantissa, even if {i} is
nominally within the range of double values.

- 202 -

MNXFP MNXFP

NAME
mnxfp -- minima and maxima of fpixel vectors

SYNOPSIS
#include "fpio.h"

void mnxfp(vec, npixv, nbands, mmval)
fpixel_t *vec;
int npixv;
int nbands;
fpixel_t *mmval;

DESCRIPTION
mnxfp find the minimum and maximum value for each of the
{nbands} bands in the array of {npixv} pixel vectors pointed
to by {vec}. The minima and maxima are interleaved into the
array pointed to by {mmval}, such that the minimum value for
band {i} is stored in {mmval}[2 * i], and the maximum value
for band {i} is stored in {mmval}[2 * i + 1]. The array
pointed to by {mmval} must therefore contain at least 2 *
{nbands} elements.

SEE ALSO
IPW: fpvread

- 203 -

NDIG NDIG

NAME
ndig -- number of digits in an integer

SYNOPSIS
int ndig(i)
int i;

DESCRIPTION
ndig calculates the number of decimal digits needed to
represent {i}.

RETURN VALUE
number of decimal digits in {i}

APPLICATION USAGE
ndig is typically used to determine the size of a string
needed to hold an ASCII representation of an integer value:

int i;
char *s;
...
s = (char *) ecalloc(ndig(i) + 1, 1);
if (s == NULL) {

...
}
s = itoa(i);

SEE ALSO
IPW: dtoa

NOTES
For negative values of {i}, the minus sign is counted as 1
digit.

- 204 -

NO_HISTORY NO_HISTORY

NAME
no_history -- turn off history mechanism in bihwrite

SYNOPSIS
void no_history(fd)
int fd;

DESCRIPTION
no_history prevents the inclusion of a history record for
the current program in any basic image header subsequently
written to file descriptor {fd}.

GLOBALS ACCESSED
_no_hist[fd] flag associated with file descriptor {fd}

APPLICATION USAGE
no_history may be called by programs that would otherwise
produce redundant history records (e.g., mux).

SEE ALSO
IPW: xxhwrite

NOTES
no_history must be called BEFORE bihwrite, or else it will
have no effect.

- 205 -

NO_TTY NO_TTY

NAME
no_tty -- exit if file descriptor is a terminal

SYNOPSIS
void no_tty(fd)
int fd;

DESCRIPTION
If the file descriptor {fd} is connected to a terminal
device, then no_tty terminates program execution, and writes
one of the error messages described below. Otherwise,
no_tty simply returns.

ERRORS
(All of the following assume {fd} is connected to a terminal
device.)

{program’s usage message}

{fd} is the standard input.

can’t write image data to a terminal

{fd} is the standard output.

can’t do image I/O on a terminal device

{fd} is neither the standard input nor the standard
output.

APPLICATION USAGE
IPW users often forget to redirect the standard input and/or
output of IPW programs, leaving these I/O channels attached
to their terminals. IPW application programs should check
all image file descriptors with no_tty, to ensure that image
data are not accidentally written to a user’s terminal
screen; or, in the case of the standard input, to remind the
user that the program expects image, not keyboard, input:

int fd;
...
fd = ustdin();
no_tty();

SEE ALSO
IPW: ipwenter, uropen

UNIX: ttyname

- 206 -

NO_TTY NO_TTY

NAME
opt_check -- check for conflicting command-line options

SYNOPSIS
#include "getargs.h"

void opt_check(n_min, n_max, n_opts, opt[, ...])
int n_min, n_max, n_opts;
OPTION_T *opt;

DESCRIPTION
opt_check checks that at least {n_min} and at most {n_max}
of the following {n_opts} option descriptors point to
options that were specified on the command line. If the
check fails, an error message is printed and execution
terminates.

ERRORS
must specify at least {n_min} of: {option, ...}
may specify no more than {n_max} of: {option, ...}

These messages are printed on the standard error
output if less than {n_min} or more than {n_max} of
the options were specified.

APPLICATION USAGE
opt_check is typically called immediately after ipwenter to
ensure that conflicting options were not specified. For
example:

opt_check(1, 2, 2, &opt_c, &opt_i);

will check that at least 1 of the options described by
{opt_c} and {opt_i} was specified.

SEE ALSO
IPW: ipwenter

NOTES
opt_check causes program termination if an error occurs.

- 207 -

ORHMAKE ORHMAKE

NAME
orhmake -- make an orientation (OR) header

SYNOPSIS
#include "orh.h"

ORH_T *orhmake(orient, origin)
char *orient, *origin;

DESCRIPTION
orhmake allocates a single-band orientation (OR) header.
The header is initialized from orhmake’s arguments:

{orient} image orientation. May be either ROW, for
row-major, or COLUMN, for column-major.

{origin} corner of image origin. May be one of:

ORIG_1 (upper left)
ORIG_2 (upper right)
ORIG_3 (lower right)
ORIG_4 (lower left)

RETURN VALUE
success: pointer to new OR header

failure: NULL

SEE ALSO
IPW: xxhmake

NOTES
The symbols ROW, COLUMN, and ORIG_? are defined in orh.h.

The standard orientation for an IPW image is (ROW, ORIG_1).
An image with this orientation does not need an OR header.

- 208 -

POW2 POW2

NAME
pow2 -- compute integral powers of 2

SYNOPSIS
int pow2(i)
int i;

DESCRIPTION
pow2 computes 2 to the power {i}, checking for out-of-range
results.

RETURN VALUE
success: 2**{i}

failure: 0

ERRORS
2**{i} is not an integer

{i} is negative.

2**{i} won’t fit in an "int"

{i} is too large.

APPLICATION USAGE
pow2 is typically called to determine the range of values
which may be assumed by an {i}-bit integer:

int npixvals;
BIH_T **bihp;
...
npixvals = pow2(ltoi(bih_nbits(bihpp[0])));

- 209 -

PVREAD PVREAD

NAME
pvread, pvwrite -- pixel-oriented I/O

SYNOPSIS
#include "pixio.h"

int pvread(fd, buf, npixv)
int fd, npixv;
pixel_t *buf;

int pvwrite(fd, buf, npixv)
int fd, npixv;
pixel_t *buf;

DESCRIPTION
These routines are analogous to uread and uwrite, but
operate on "pixel vectors" instead of bytes. A pixel vector
consists of all of the pixel values (one for each band)
associated with a single image sample, converted to the
unsigned integer type pixel_t.

pvread reads {npixv} pixel vectors from the image accessed
by file descriptor {fd} to the buffer pointed to by {buf}.

pvwrite writes {npixv} pixel vectors from the buffer pointed
to by {buf} to the image accessed by file descriptor {fd}.

RETURN VALUE
success: number of pixel vectors read or written

failure: ERROR

ERRORS
partial pixel vector read

The {npixv} passed to pvread requested more pixel
vectors than were available.

GLOBALS ACCESSED
_piocb[fd] pixio control block for file descriptor {fd}

APPLICATION USAGE
These functions provide a simple way for application
programs to access "raw" image pixel values, without having
to worry about the underlying pixel representations (varying
numbers of bytes and significant bits per pixel.)

- 210 -

PVREAD PVREAD

SEE ALSO
IPW: fpvread, uread, uropen

NOTES
It is important to remember that the {npixv} argument to
these functions is the number of pixel VECTORS to be read or
written, and that the corresponding number of INDIVIDUAL
PIXELS is {npixv} * (number of bands per image sample).

Calls to fpio, pixio, and uio I/O functions should not be
intermixed on the same file descriptor.

- 211 -

SATHMAKE SATHMAKE

NAME
sathmake -- make a satellite (SAT) header

SYNOPSIS
#include "sath.h"

SATH_T *sathmake(platform, sensor, location, gmdate, gmtime)
char *platform, *sensor, *location, *gmdate, *gmtime;

DESCRIPTION
sathmake allocates a single-band satellite (SAT) header.
The header is initialized from sathmake’s
arguments:

{platform} platform (spacecraft) from which the image
acquired (e.g., "Landsat 5", "SPOT 1", etc.)

{sensor} sensor that acquired the image (e.g., "TM",
"HRV", etc.)

{location} location identifier for this image (e.g., TM
path/row, SPOT K,J designator, etc.)

{gmdate} Greenwich date of image acquisition,
expressed as "YYYYMMDD".

{gmtime} Greenwich Mean (Universal) time of image
acquisition, expressed as "HHMMSS.S..."
(i.e., arbitrary number of fractional
seconds).

RETURN VALUE
success: pointer to new SAT header

failure: NULL

SEE ALSO
IPW: mksath, xxhmake

NOTES
There are not yet any standard values for {platform},
{sensor}, or {location}.

- 212 -

SKEWHMAKE SKEWHMAKE

NAME
skewhmake -- make a skew (SKEW) header

SYNOPSIS
#include "skewh.h"

SKEWH_T *skewhmake(angle)
double angle;

DESCRIPTION
skewhmake allocates a single-band skew (SKEW) header. The
header is initialized from skewhmake’s arguments:

{angle} skew angle, indicating that successive image
lines are offset such that the left edge of
the image forms an angle of {angle} degrees
from the vertical, measured clockwise.

RETURN VALUE
success: pointer to new SKEW header

failure: NULL

SEE ALSO
IPW: skew, xxhmake

NOTES
The skew angle is measure in DEGREES, not radians.

- 213 -

SKIPHDRS SKIPHDRS

NAME
skiphdrs, copyhdrs, fphdrs -- process groups of image headers

SYNOPSIS
#include "gethdrs.h"

void skiphdrs(fdi)
int fd;

void copyhdrs(fdi, nbands, fdo)
int fdi, nbands, fdo;

#include "fpio.h"

void fphdrs(fdi, nbands, fdo)
int fdi, nbands, fdo;

DESCRIPTION
These functions read all remaining image headers from the
input image accessed by file descriptor {fdi}.

skiphdrs skips (i.e. does nothing) with the input headers.

copyhdrs copies any input headers associated with band
numbers less than {nbands} to the output image accessed by
file descriptor {fdo}. Headers associated with band numbers
greater than or equal to {nbands} are skipped.

fphdrs behaves identically to copyhdrs, except that any
input LQ headers are made available to the fpio subsystem.

APPLICATION USAGE
These functions are used by programs which do not require
direct access to any of the input image’s optional headers.
The image data streams involved are left positioned at the
first pixel in the image.

Use gethdrs to ingest specific optional input image
headers. Use the appropriate xxhwrite routines to write
specific optional output image headers.

SEE ALSO
IPW: fpvread, gethdrs, xxhread, xxhwrite

- 214 -

SKIPHDRS SKIPHDRS

NOTES
These functions terminate program execution if any errors
are encountered.

bihread must have been called on {fdi} before calling any of
these functions. bihwrite must have been called on {fdo}
before calling copyhdrs or fphdrs.

- 215 -

SUNHMAKE SUNHMAKE

NAME
sunhmake -- make a sun position (SUN) header

SYNOPSIS
#include "sunh.h"

SUNH_T *sunhmake(cos_zen, azm)
double cos_zen;
double azm;

DESCRIPTION
sunhmake allocates a single-band sun position (SUN) header.
The header is initialized from sunhmake’s arguments:

{cos_zen} cosine of the solar zenith angle.

{azm} solar azimuth, measured in radians
counterclockwise from the south.

RETURN VALUE
success: pointer to new SUN header

failure: NULL

ERRORS
sunhmake: bad cosine {cos_zen}

{cos_zen} is outside the range [-1..1]

sunhmake: bad azimuth {azm}

{azimuth} is outside the range [-PI..PI].

SEE ALSO
IPW: mksunh, xxhmake

NOTES
A negative {cos_zen} indicates that the sun is below the
horizon.

- 216 -

UCLOSE UCLOSE

NAME
uclose -- close UNIX file descriptor

SYNOPSIS
int uclose(fd)
int fd;

DESCRIPTION
uclose forces any buffered uio output pending on file
descriptor {fd} to be written, and then closes the file.
All uio internal state information pertaining to {fd} is
reset (cleared or deallocated).

RETURN VALUE
success: OK

failure: ERROR

GLOBALS ACCESSED
_uiocb[fd] uio control block for file descriptor {fd}

APPLICATION USAGE
Application programs normally do not need to explicitly call
uclose, since it is called automatically for all open files
by ipwexit. However, it may be necessary to explicitly
close a file that has been opened for writing, if you
subsequently want to reopen it for reading, since uio does
not allow simultaneous read/write access.

SEE ALSO
IPW: ipwexit, ugets, uread, uropen

UNIX: close

NOTES
Any buffered INPUT pending on {fd} is discarded.

Passing a uclose’d file descriptor to any uio routine will
cause an assertion violation.

- 217 -

UCOPY UCOPY

NAME
ucopy -- copy data between files

SYNOPSIS
long ucopy(fdi, fdo, ncopy)
int fdi, fdo;
long ncopy;

DESCRIPTION
ucopy copies {ncopy} bytes from file descriptor {fdi}
to file descriptor {fdo}.

RETURN VALUE
success: number of bytes copied

failure: ERROR

APPLICATION USAGE
ucopy is useful chiefly to programs that are copying all of
the pixel data from an input IPW image to an output non-IPW
image (see the documentation for the imgsize function.)

For copying pixel data between IPW image files, use the
imgcopy function.

SEE ALSO
IPW: imgcopy, imgsize, uropen

- 218 -

UEOF UEOF

NAME
ueof -- check for uio end-of-file

SYNOPSIS
bool_t ueof(fd)
int fd;

DESCRIPTION
ueof tests whether there any data remaining to be read from
file descriptor {fd}, which must have been opened for
reading by uropen.

RETURN VALUE
TRUE if end-of-file has been reached; else FALSE

GLOBALS ACCESSED
_uiocb[fd] uio control block for file descriptor fd

SEE ALSO
IPW: uread

- 219 -

UGETS UGETS

NAME
ugets, uputs -- text-oriented I/O

SYNOPSIS
char *ugets(fd, buf, nbytes)
int fd, nbytes;
char *buf;

int uputs(fd, buf)
int fd;
char *buf;

DESCRIPTION
ugets reads bytes from file descriptor {fd} into the buffer
pointed to by {buf}, until any of the following are true:

- {nbytes}-1 bytes have been read and transferred to {buf};
or

- a newline character (’0) has been read and transferred
to {buf}; or

- an end-of-file condition is encountered on {fd}.

An EOS character (’ ’) is placed after the last byte
transferred to {buf} (i.e., on return, {buf} will point to a
null-terminated C string).

uputs writes the EOS-terminated string pointed to by {buf}
to file descriptor {fd}. The terminating EOS is NOT
written.

RETURN VALUE
success: {buf} (ugets); number of bytes written (uputs)

failure: NULL (ugets); ERROR (uputs)

GLOBALS ACCESSED
_uiocb[fd] uio control block for file descriptor fd

APPLICATION USAGE
Use ugets and uputs for text-oriented input and output on
uio files.

- 220 -

UGETS UGETS

SEE ALSO
IPW: uropen, uread

UNIX: fgets, fputs

NOTES
ugets and uputs are analogous to the UNIX stdio routines
fgets and fputs, respectively.

Calls to ugets and uread, or uputs and uwrite, may be freely
intermixed.

- 221 -

UREAD UREAD

NAME
uread, uwrite -- byte-oriented I/O

SYNOPSIS
int uread(fd, buf, nbytes)
int fd, nbytes;
addr_t buf;

int uwrite(fd, buf, nbytes)
int fd, nbytes;
addr_t buf;

DESCRIPTION
uread is a reliable interface to the UNIX read function. It
reads {nbytes} bytes from file descriptor
{fd} into the buffer pointed to by {buf}, unless end-of-file
is reached, or an I/O error occurs.

uwrite is a reliable interface to the UNIX write function.
It writes {nbytes} bytes from the buffer pointed to by {buf}
to file descriptor {fd}. The various types of write errors
are detected and folded into a single error return.

These functions provide transparent internal buffering,
which conceals the effects of I/O through UNIX pipes.

RETURN VALUE
success: number of bytes read/written

failure: ERROR

ERRORS
incomplete write

Some number of bytes less than the number requested
were written. This is not necessarily due to a hard
I/O error.

GLOBALS ACCESSED
_uiocb[fd] uio control block for file descriptor {fd}

APPLICATION USAGE
uread and uwrite are intended to replace the direct use of
the UNIX read and write system calls in IPW application
code.

- 222 -

UREAD UREAD

SEE ALSO
IPW: uropen

UNIX: read, write

NOTES
The {fd} passed to uread must have originally been obtained
from either uropen or ustdin.

The {fd} passed to uwrite must have originally been obtained
from either uwopen or ustdout.

Calls to fpio, pixio, and uio I/O functions should not be
intermixed on the same file descriptor.

- 223 -

UREMOVE UREMOVE

NAME
uremove -- delete a file

SYNOPSIS
int uremove(filename)
char *filename;

DESCRIPTION
remove causes the file {filename} to be deleted.

RETURN VALUE
success: OK

failure: ERROR

APPLICATION USAGE
uremove is typically used by application programs to delete
scratch files. It should be always be called instead of the
UNIX system call unlink, or the ANSI library function
remove.

SEE ALSO
IPW: uclose, uropen

UNIX: remove, unlink

NOTES
If the file {filename} is currently open (i.e., is connected
to a file descriptor), then the behavior of remove is
implementation-defined.

- 224 -

UROPEN UROPEN

NAME
uropen, ustdin, uwopen, ustdout -- access files

SYNOPSIS
int uropen(name)
char *name;

int ustdin()

int uwopen(name)
char *name;

int ustdout()

DESCRIPTION
These functions provide low-level (uio) access to named UNIX
files, or to the standard input and output. They are the
ONLY means by which IPW application programs may obtain file
descriptors.

uropen returns a readable file descriptor connected to the
UNIX file {name}. The name "-" means the standard input.

ustdin (equivalent to uropen("-")) returns a file descriptor
for the standard input.

uwopen returns a writable file descriptor connected to the
UNIX file {name}. The file is created if it does not
already exist, or truncated if it does.

ustdout returns a file descriptor for the standard output.

RETURN VALUE
success: uio file descriptor

failure: ERROR

ERRORS
can’t initialize standard input

ustdin was unable to allocate a uio buffer for the
standard input.

can’t initialize standard output

ustdout was unable to allocate a uio buffer for the
standard output.

- 225 -

UROPEN UROPEN

APPLICATION USAGE
Use uropen wherever you would normally use the UNIX system
call open() to open a file for reading.

ustdin should be called by an IPW main() if the program will
be reading image data from the standard input. ustdin
should NOT be called if the program uses UNIX stdio input
functions (e.g., scanf) on the standard input.

Use uwopen wherever you would normally use the UNIX system
call creat() to open a file for writing.

ustdout should be called by an IPW main() if the program
will be writing image data to the standard output. ustdout
should NOT be called if the program uses UNIX stdio output
functions (e.g., printf) on the standard output.

SEE ALSO
IPW: ugets, uclose, ucopy, ueof, uread, urskip

UNIX: creat, open

NOTES
ustdin and ustdout cause program termination if any errors
are encountered.

A default protection mode (usually -rw-r--r--) is applied to
files created by uwopen.

- 226 -

URSKIP URSKIP

NAME
urskip -- skip input on UNIX file descriptor

SYNOPSIS
long urskip(fd, nbytes)
int fd;
long nbytes;

DESCRIPTION
urskip reads and discards {nbytes} bytes from file
descriptor {fd}.

RETURN VALUE
success: number of bytes skipped

failure: ERROR

GLOBALS ACCESSED
_uiocb[fd] uio control block for file descriptor {fd}

APPLICATION USAGE
Use urskip to effect a "forward seek" on {fd}. Note that
you cannot call lseek directly from an IPW program since

- it would confuse uio’s internal buffering;

- IPW input "files" are often really pipes, which do not
support seeking (urskip will call lseek if {fd} supports
it.)

SEE ALSO
IPW: uread

UNIX: lseek

NOTES
urskip will cause an assertion violation if {nbytes} is less
than 1 (i.e., only forward skips are allowed.)

- 227 -

USRERR USRERR

NAME
usrerr, uferr, syserr -- deferred error handling

SYNOPSIS
void usrerr(format, ...)
char *format;

void uferr(fd)
int fd;

void syserr()

DESCRIPTION
These functions save error information in global variables,
for later incorporation in error messages generated by the
error or warn functions.

usrerr saves the error message described by the printf-style
{format} and optional additional arguments.

uferr saves the file descriptor {fd}, which may be used by
error or warn to obtain the associated file name.

syserr causes any current UNIX system error condition to be
saved. The associated error message will be incorporated in
the output generated by error or warn.

GLOBALS ACCESSED
_usrerr usrerr stores its error message in this

string.

_fderr uferr sets this to {fd}.

_errno syserr sets this to the current UNIX "errno"
value.

- 228 -

USRERR USRERR

APPLICATION USAGE
usrerr is called to save topical information that would
otherwise be passed directly to error or warn; for example,
if error or warn may not be called until the current
function returns.

uferr should be called before error or warn if the name of
the file accessed by {fd} should appear in the error
message. Note that any IPW library functions that deal with
file descriptors will call uferr themselves whenever
appropriate.

syserr is seldom invoked by application programs, since they
do not directly invoke UNIX system calls.

SEE ALSO
IPW: error, uropen

UNIX: errno, perror, vsprintf

- 229 -

WINHMAKE WINHMAKE

NAME
winhmake -- make a window (WIN) header

SYNOPSIS
#include "winh.h"

WINH_T *winhmake(bline, bsamp, dline, dsamp)
double bline, bsamp, dline, dsamp;

DESCRIPTION
winhmake allocates a single-band window (WIN) header. The
header is initialized from winhmake’s arguments:

{bline} window coordinate of image line 0

{bsamp} window coordinate of image sample 0

{dline} window distance between image lines

{dsamp} window distance between image samples

RETURN VALUE
success: pointer to new WIN header

failure: NULL

SEE ALSO
IPW: mkwinh, window, xxhmake

NOTES

- 230 -

XXHDUP XXHDUP

NAME
xxhdup -- duplicate an XX header

SYNOPSIS
#include "xxh.h"

XXH_T **xxhdup(old, nbands)
xxh_t **old;
int nbands;

DESCRIPTION
xxhdup is the general form of a specific function that is
provided for each type of IPW image header.

xxhdup allocates a new XX header that duplicates the first
{nbands} bands of the XX header pointed to by {old}.

RETURN VALUE
success: a pointer to the newly-allocated duplicate header

failure: NULL

APPLICATION USAGE
To duplicate a GEO header:

GEOH_T **i_geohpp;
GEOH_T **o_geohpp;
...
o_geohpp = geohdup(i_geohpp, nbands);
if (o_geohpp == NULL) {

error("can’t duplicate GEO header");
}
...

SEE ALSO
IPW: gethdrs, xxhmake, xxhread, xxhwrite

NOTES
The header to be duplicated must have at least {nbands} bands.

The function bihdup does not take an {nbands} argument,
instead obtaining the number of bands directly from the
{old} header. bihdup always duplicates all of the bands of
the {old} header.

- 231 -

XXHMAKE XXHMAKE

NAME
xxhmake -- procedure for creating a new XX header

SYNOPSIS
#include "xxh.h"

XXH_T *xxhmake(...)

DESCRIPTION
xxhmake is the general form of a specific function that is
provided for each type of IPW image header.

xxhmake allocates a SINGLE BAND of an XX header and
initializes it with the header-specific argument values.

RETURN VALUE
success: a pointer to the newly-created single-band

component of an XX header

failure: NULL

- 232 -

XXHMAKE XXHMAKE

APPLICATION USAGE
(The following example assumes that the header being created

will eventually be written to the {nbands}-band image
accessed by file descriptor {fd}.)

To allocate a new image header, you must first allocate the
array of pointers to each band’s header:

int band; /* image band # */
int fd; /* image file descriptor */
int nbands; /* # bands / sample */
XXH_T **xxhp; /* -> XX headers */

...

xxhp = (XXH_T **) hdralloc(nbands, sizeof(XXH_T *),
fd, XXH_HNAME);

then, you must create each band’s header with xxhmake:

for (band = 0; band < nbands; ++band) {
xxhp[band] = xxhmake(...);
if (xxhp[band] == NULL) {

uferr(fd);
error("band %d: %s header",

band, XXH_HNAME);
}

}

SEE ALSO
IPW: hdralloc, xxhdup, xxhread, xxhwrite

plus the documentation for each header-specific hmake
function.

- 233 -

XXHREAD XXHREAD

NAME
xxhread -- read an XX image header

SYNOPSIS
#include "xxh.h"

XXH_T **xxhread(fd)
int fd;

DESCRIPTION
xxhread is the general form of a specific function that is
provided for each type of IPW image header.

xxhread reads an XX image header from file descriptor {fd}.
An array of per-band XXH_T pointers is allocated. If a band
has an XX header, then an XXH_T header is allocated and its
address is placed in the corresponding array element;
otherwise, the corresponding array element is NULL.

RETURN VALUE
success: pointer to array of XXH_T pointers

failure: NULL

- 234 -

XXHREAD XXHREAD

ERRORS
can’t allocate "xx" header
can’t allocate array of "xx" header pointers

The header won’t fit in memory.

"xx" header: bad band "{band}"

An XX per-band header contains an invalid band
number.

The following errors pertain ONLY to bihread:

invalid IPW image (no "basic_image_i" header)

An image does not begin with a BI header.

"basic_image_i" header: nbands < 1

The BI header contains an invalid number of bands.

no "basic_image" header for band {band}

The image has no per-band BI component for the
specified band. The BI header is the only IPW image
header that must be present for all image bands.

GLOBALS ACCESSED
Pointers to certain image headers are saved in global data
structures, so that the information in the header is
accessible via the file descriptor of the image from which
the header was read:

_bih[fd] (set by bihread)

_lqh[fd] (set by lqhread)

APPLICATION USAGE
Except for bihread, which must always be called explicitly,
these functions are usually not called directly by IPW
application programs. Instead, pointers to the appropriate
xxhread functions for the headers a program wishes to ingest
are passed to the gethdrs function.

SEE ALSO
IPW: gethdrs, xxhwrite

- 235 -

XXHREAD XXHREAD

NOTES
"failure" includes encountering a premature end-of-file.

It is an error to call xxhread if the next item to be read
from {fd} is not an XX header.

- 236 -

XXHWRITE XXHWRITE

NAME
xxhwrite -- write an XX image header

SYNOPSIS
#include "xxh.h"

int xxhwrite(fd, xxhpp)
int fd;
XXH_T **xxhpp;

DESCRIPTION
xxhwrite is the general form of a specific function that is
provided for each type of IPW image header.

xxhwrite writes the XX headers pointed to by {xxhpp} to file
descriptor {fd}.

RETURN VALUE
success: OK

failure: ERROR

GLOBALS ACCESSED
Pointers to certain image headers are saved in global data
structures, so that the information in the header is
accessible via the file descriptor of the image to which the
header was written:

_bih[fd] (set by bihwrite)

_lqh[fd] (set by lqhwrite)

APPLICATION USAGE
Output image headers may be simply copied from an input
image, using the gethdrs or copyhdrs functions, or they may
be written explicitly, using the appropriate xxhwrite
function. The latter method is used by programs which
create new headers (e.g., transpose, which creates an OR
header), or modify existing ones (e.g., window, which may
modify input WIN and GEO headers.)

SEE ALSO
IPW: boimage, gethdrs, xxhread

- 237 -

XXHWRITE XXHWRITE

NOTES
bihwrite must always be called explicitly to write a BI
header to an output image, before any other headers or pixel
data are written to that image.

- 238 -

7.3. SHELL SCRIPT SUPPORT ROUTINES
This section contains copies of the on-line documentation for the IPW commands

that exist solely to support IPW shell scripts. The format of this documentation is
described in §5.2 and §A.1.1.1.

- 239 -

ISPOSINT ISPOSINT

NAME
isposint -- test for positive nonzero integer argument

SYNOPSIS
isposint argument

DESCRIPTION
isposint tests whether {argument} is a positive nonzero
decimal integer.

DIAGNOSTICS
The exit status is 0 is {argument} is a positive nonzero
integer; nonzero if it is not.

EXAMPLES
A command-line processing loop in a shell script might
contain the following:

while :; do
case $1 in
...
-i) nbits=$2

isposint $nbits ||
exec sherror $0 \
"$nbits: not a positive integer"

shift
;;

...
esac
shift

done

SEE ALSO
IPW: sherror

NOTES
isposint is currently implemented as a shell script.

- 240 -

SHERROR SHERROR

NAME
sherror -- standard IPW error message for shell scripts

SYNOPSIS
sherror pgm message [file]

DESCRIPTION
sherror is an error message generator that may be called by
IPW shell scripts. The error messages are printed in a
similar format to the IPW error message generated by the
library function error.

The {pgm} argument is almost always $0 (i.e., the name by
which the shell script was invoked). The {message} argument
must be a single string (i.e., it must be quoted if it
contains white space). The optional {filename} argument, if
present, will appear on a separate line in the error message
and will be identified as a file name.

DIAGNOSTICS
ERROR: wrong # args!

EXAMPLES
sherror is usually exec’d, so that it will terminate
execution of the shell script. For example:

...
case $1 in
...
-*) exec sherror $0 "$1: unsupported option"

;;
...

or:
[-r $filename] ||

exec sherror $0 "can’t access file" $filename

SEE ALSO
IPW: error, usage

NOTES
sherror always exits with a nonzero status

sherror is currently implemented as a shell script.

- 241 -

USAGE USAGE

NAME
usage -- standard IPW usage message for shell scripts

SYNOPSIS
usage pgm synopsis description

DESCRIPTION
usage is a usage message generator that may be called by IPW
shell scripts. The usage messages are printed in a similar
format to the usage message generated by the library
function ipwenter.

The {pgm} argument is almost always $0 (i.e., the name by
which the shell script was invoked). The {synopsis} and
{description} arguments must be single strings (i.e., must
be quoted if they contain white space).

DIAGNOSTICS
USAGE: wrong # args!

EXAMPLES
The following is a typical shell script command-line parsing
sequence, taken from the mklut command:

...
optstring=’i:o:k:’
synopsis=’[-i in_nbits] [-o out_nbits] [-k bkgd]’
description=’make look-up table’

get command-line arguments

set - ‘getopt "$optstring" $* 2>/dev/null‘ ||
exec usage $0 "$synopsis" "$description"

...

SEE ALSO
IPW: ipwenter, sherror

NOTES
usage always exits with a nonzero status

usage is currently implemented as a shell script.

- 242 -

CHAPTER 8: INSTALLATION AND MAINTENANCE

This chapter describes how to install the IPW software. IPW is currently known to
operate on the following systems:

hardware operating system
Sun-3 SunOS 3.4, 3.5, 4.0.3
Sun-4 SunOS 4.0.3
IBM PS/2 Model 80 AIX 1.1
IBM RT Model 135 AOS 4.3

Installing IPW on any of these systems should be straightforward. This chapter also
provides guidance for porting IPW to a new environment.

8.1. CREATE IPW ACCOUNT
Your IPW host system should have a unique ipw user and a unique ipw group.

Create them now if they don’t already exist (you must be the super-user to do this).
Here is the relevant entry from our /etc/passwd file:

ipw:*:22:21:(IPW subsystem):/usr/home/ipw:/bin/csh

The * in the password field will keep the account disabled until you explicitly set a
password. The user- and group-IDs, and the home directory, will have to be customized
for your system.

Here is the relevant line from our /etc/group file:

ipw::21:dozier,frew

You should edit the user list to include only those users (besides ipw) to whom you
wish to grant write access to IPW source files, libraries, etc.

Neither the ipw user nor the ipw group are required for IPW to function, but they
simplify administration. Users can access the IPW root directory as ˜ipw (from shells
which support tilde expansion), and the ipw password can be given to an IPW adminis-
trator without compromising the security of non-IPW files. The ipw user can further
control access by members of the ipw group by selectively enabling or disabling group
write permissions on IPW directories. As distributed, IPW has group write permis-
sion enabled on all directories, so it is a good idea to have the ipw user in a group
of its own, even if no other users are to be admitted to the group.

Next, make a home directory for ipw :

mkdir ˜ipw
chown ipw ˜ipw
chgrp ipw ˜ipw
chmod 775 ˜ipw

Finally, set a password for the ipw account:

passwd ipw

All the remaining installation instructions assume you are logged in as (or su ’d to)
ipw .

- 243 -

8.2. LOAD THE DISTRIBUTION TAPE
IPW is distributed on magnetic tape36, as a single UNIX tar archive. To extract

the tape, type:

% cd ˜ipw
% tar xvpbf blocking-factor tape-device

where blocking-factor is 20 for 1/2-inch tapes, or 200 for 1/4-inch cartridge tapes.
tape-device is the appropriate UNIX tape device name (e.g., /dev/rmt8 , /dev/rst0 ,
etc.) The p flag is important; it guarantees that the original file permissions will be
restored.

8.2.1. Possible ownership problems
Do an ls -lg (or ls -l for USG-derived UNIXes) on ˜ipw . If the extracted

files and directories are owned by user ipw and group ipw, then skip the remainder of
this section.

If your UNIX system allows non-privileged users to execute the chown system call,
then the tar command shown above may set the user- and group-IDs of the IPW files to
whatever they were on the system where the distribution tape was created. These will
almost certainly NOT be the correct user- and group-IDs for your system. If this
occurs, you will have to become root and run chown and chgrp on the IPW hierarchy.

If your system has the xargs command, you can type37:

find ˜ipw -print | xargs chown ipw
find ˜ipw -print | xargs chgrp ipw

Otherwise, type

find ˜ipw -exec chown ipw {} \; -exec chgrp ipw {} \;

8.3. DIRECTORY HIERARCHY

The files comprising the IPW distribution are organized into a standard hierarchy
of directories. This yields several benefits:

• Once the structure of the hierarchy is learned, an IPW programmer or administra-
tor can quickly locate any particular file.

• IPW programs can locate data files as long as the root of the hierarchy is known.

• Additions to IPW have logical homes in the directory hierarchy.

The IPW directory hierarchy is based on the traditional /usr hierarchy found on
most UNIX systems, and is thus easily learned by most UNIX users. In particular, the
following top-level directories are always present:

bin doc etc h lib pub skel src

Other top-level directories are present in some IPW implementations, but are not part

36 If you have obtained IPW via ftp , then substitute the name of the archive file for tape-device
in the following instructions.

37 On BSD-derived systems, the separate chown and chgrp commands may be combined into a
single chown user.group command.

- 244 -

of the standard distribution. Figure 8.1 illustrates the standard IPW directory hierar-
chy.

- 245 -

|-bin
|
|-doc
|
|-etc
| |-ansi--|-conf.float
| | |-conf.limits
|-h----|-conf
| |
| |-posix-|-conf
|
|-lib--|-make--|-conf
|
|-pub
| |-hdr
| |-lib
|-skel-|-misc
| |-pgm
| |-sh
| |-bitcom
| |-cmpimg
| |-bin---| ...

$IPW--| | |-window
| | |-zoom
| |
| | |-atob
| | |-btoa
| |-etc---| ...
| | |-rastool
|-src--| |-xim

|
| |-isposint
| | |-args
| | |-bih
| |-libipw------| ...
| | |-sath
| | |-winh
|-lib---|

|-libunix-----|-conf
| |-src
|-sherror
|
|-syslint
|
|-usage

Figure 8.1: standard IPW directory hierarchy

- 246 -

bin contains the executable files (binaries and shell scripts) comprising most IPW
commands.

doc contains any machine-readable documentation distributed with IPW. If a
documentation file contains embedded formatting commands (e.g., for troff), then a
formatted version will also be present.

etc contains the executable files comprising any IPW commands not kept in bin .
There are two kinds of commands in etc :

• maintenance commands (e.g., ipwmake)

• non-IPW commands distributed along with IPW. These include various public-
domain utilities often invoked by IPW shell scripts.

etc contains only ipwmake and install at the beginning of the IPW installation. to
simplify building the rest of IPW.

h contains all IPW source header files (i.e., files that are #include d by IPW C
source files.) The file h/ipw.h is the ‘‘master’’ IPW header file, and must be
#include d by all IPW source files.

lib contains support files and directories; i.e., files that are not accessed directly
by an IPW user, but rather indirectly by other components of IPW.

• Files named lib library .a are UNIX archives of compiled IPW functions, accessed
by ipwmake .

• Files named llib- library .ln are lint libraries, accessed by ipwlint .38

• Files in the lib/make directory contain standard definitions and rules used by
ipwmake .

skel contains template (‘‘skeleton’’) files that may be used as a starting point for
creating new IPW functions and commands.

src contains all source code (C and shell) for IPW. The directory hierarchy under
src mirrors the top-level IPW hierarchy:

• src/bin contains the sources for all bin commands. The source for each com-
mand occupies a its own directory under src/bin ; e.g., src/bin/lutx contains
the source for the lutx command.

• src/etc contains the sources for all etc commands. As with src/bin , each com-
mand has its own directory.

• src/lib contains the sources for all libraries and commands in lib . For each
library lib library .a there is a directory src/lib/ library.

Files that can be created entirely from other IPW files are not normally included
on the IPW distribution media. In particular, bin will be empty, and etc and lib will
contain only enough files to ‘‘bootstrap’’ the installation of IPW.

There are some additional standard file and directory names that are used
throughout the IPW directory hierarchy:

• Makedefs files describe how ipwmake is to process a particular component of IPW
(see §8.5.)

• READMEfiles contain design notes, suggestions for further development, and other
miscellaneous information.

38 These files are redundant if an ANSI-conforming C compiler is available.

- 247 -

• RCSdirectories contain the master files used by the RCS revision control system
(these files are not usually distributed with IPW).

• TEST directories contain test drivers and input data for the IPW components in the
parent directory.

• conf directories contain system-specific versions of files that should be installed
(either as-is or with suitable modifications) in the parent directory of the conf
directory. These files are described in more detail below.

8.4. CONFIGURING THE SHELL(S)
From here on, we make 2 important assumptions about the IPW environment:

• An IPW user’s interactive command interpreter is csh (the Berkeley ‘‘C shell’’)

• command files (‘‘shell scripts’’) whose first character is a colon (:) will be exe-
cuted by sh (the ‘‘Bourne shell’’). Your sh must understand the sharp-sign (#)
comment convention; no other extensions to the original Version 7 [BTL 1983] sh
are used.

See pub/cshrc below for suggestions on dealing with departures from these
assumptions.

Also, all path names given below are relative to ˜ipw .

8.4.1. pub/cshrc
The file pub/cshrc should be sourced by all IPW users before they issue any IPW

commands. Usually, a line like the following is placed in an IPW user’s .cshrc file:

source ˜ipw/pub/cshrc

This file should not need to be changed, but take a look at it now. The environment
variable IPW must be set to the name of the IPW root directory. The environment vari-
able TMPDIR must be set to the name of a directory on which scratch images may be
written. Finally, the directories ˜ipw/bin and ˜ipw/etc must be in an IPW user’s
search path.

If shell scripts beginning with a colon aren’t automatically run by sh , then you
may need to add the following line to pub/cshrc :

setenv SHELL /bin/sh # or wherever sh lives

(This is necessary on some XENIX systems, for instance.)

If your interactive command interpreter isn’t csh , then you’ll need to prepare an
equivalent of pub/cshrc . For example, a pub/profile for sh might look like this:

IPW=/usr/home/ipw # or whatever corresponds to ˜ipw
TMPDIR=/usr/tmp
export IPW TMPDIR
PATH=$PATH:$IPW/bin:$IPW/etc

and then sh users would put the following in their .profile file:

. /usr/home/ipw/pub/profile

- 248 -

8.4.2. lib/ipwenv
The file lib/ipwenv contains local definitions for nonportable UNIX commands

used by IPW shell scripts. Check the definitions in this file and fix any that are inap-
propriate for your host:

AWK An awk command that conforms to the 1985 definition [Aho 1988] of the awk
language. As of this writing, all IPW scripts will work with older versions of awk,
but this may change with future releases of IPW.

LC_WD
Produce a multi-column listing of the current directory. On some UNIX systems,
the ls command does this by default.

LLG Produce a ‘‘long’’ directory listing with both the owner and the group of each file.
Some UNIX systems use the command ls -lg , while others use ls -l .

8.5. CONFIGURING MAKE
There are about as many varieties of the make command as there are varieties of

UNIX. For the sake of portability, we assume a lowest common denominator of capabil-
ity (i.e., Version 7 make), and provide an ipwmake command to automatically generate
an appropriate makefile 39 for each IPW command and library. ipwmake uses some
nonportable ‘‘boilerplate’’ that you will probably have to customize.

8.5.1. lib/make/local
The lib/make directory contains the boilerplate used by the ipwmake command

(as opposed to program-specific instructions, which are kept in a Makedefs file in each
source directory). You can take a look at etc/ipwmake to see how it all fits together.
The only file that should need changing should be lib/make/local . The directory
lib/make/local/conf contains versions of lib/make/local for various systems. You
should copy or link the most appropriate one to lib/make/local , editing it if neces-
sary.

A detailed description of the contents of lib/make/local is beyond the scope of
this chapter; see the comments therein. However, here are some things to watch out
for:

AR_XOPTS
ipwmake ’s library-update procedure relies on the ability to extract files from an
archive with their original modification times. BSD-derived ar ’s use the o qualif-
ier to do this, while (some) USG ar ’s do this by default.

If your ar command cannot be persuaded to restore the original modification
times of extracted files, then you will have to modify lib/make/rules so that
object files are not removed from the library source directory after they are
inserted into the library. This will consume additional disk space, but will
prevent redundant compilations if you plan to modify or extend the IPW libraries.

8.6. CONFIGURING THE C COMPILER
Now the header files used by IPW C code must be modified. This basically

involves elaborating the specific ways in which your system differs from an ‘‘ideal’’

39 The makefile generated by ipwmake is piped directly to make.

- 249 -

combination of ANSI C [ANSI 1989] and POSIX [IEEE 1988].

8.6.1. h/config.h
The file h/config.h contains many #define ’s that customize your C environ-

ment. The directory h/conf contains versions of h/config.h for various systems.
You should copy or link the most appropriate one to h/config.h . Unless your system
EXACTLY matches one of the configurations in h/conf , you should check each
#define against its description in h/conf/README . Here are some things to pay spe-
cial attention to:

CC_NOBCOPY, CC_NOBZERO
Note that these options read as a double-negative; i.e. CC_NOBCOPYshould be 1 if
bcopy() ISN’T provided in your host’s C library.

CC_BIGENDIAN
This option refers to the order of bytes in an integer; it should be 1 on machines
where the memory address of an integer is also the address of its high-order byte
(e.g., MC680x0).

OPT_BUF
This is the buffer size IPW uses with read() and write() . It MUST NOT be
larger than the maximum number of bytes that may be written to a pipe in a sin-
gle write() . 4096 is the largest portable value. On memory-limited systems,
you may want to use a smaller value, in which case 1024 is suggested.

FREG_?
These options are only appropriate for machines with separate floating-point
registers (e.g. MC68881) that are known to the C compiler. Do NOT use for
machines that store floating-point values in general registers (e.g. VAX).

8.6.2. h/ansi
If your system has ANSI-conforming C header files, then you must copy or link

<float.h> and <limits.h> to the directory h/ansi . Otherwise, you must create sub-
stitutes for these header files, as described below.

8.6.2.1. h/ansi/float.h

The file h/ansi/float.h is a substitute for the ANSI header file <float.h> .
The directory h/ansi/conf.float contains versions of h/ansi/float.h for various
systems. If you’re lucky, you’ll be able to copy or link one of these files unchanged into
h/ansi/float.h . If you’re a bit less lucky, i.e. if your particular machine isn’t men-
tioned explicitly, BUT it supports IEEE 754 floating point, you can copy or link the gen-
eric file h/ansi/conf.float/ieee754 .

If, however, you’re not so lucky, you’ll have to generate a h/ansi/float.h from
scratch. First, try going to the directory src/etc/machine and typing make. If the
resulting program machine 40 compiles and runs successfully, it will generate a
float.h case for your machine - you just have to catch the output of machine -float
in h/ansi/float.h .

In the unlikely event that machine won’t compile or run successfully, you’ll have
to do some detective work. Your system may have a file <values.h> that contains

40 machine incorporates a C version of the Fortran subroutine machar [Cody 1988].

- 250 -

some of the parameters you’ll need; otherwise, consult a hardware manual or a local
guru.

8.6.2.2. h/ansi/limits.h

The file h/ansi/limits.h is a substitute for the ANSI header file <limits.h> .
The directory h/ansi/conf.limits contains versions of h/ansi/limits.h for vari-
ous systems. You should copy or link the most appropriate one to h/ansi/limits.h ,
editing it if necessary. If none of the existing versions are usable, you can generate one
with the machine command described in the previous section, invoked as machine
-limits .

8.6.3. h/posix
If your system conforms to the IEEE 1003 (‘‘POSIX’’) UNIX specification, then you

must copy or link <limits.h> to the directory h/posix . Otherwise, you must create a
substitute for this header file, as described below.

8.6.3.1. h/posix/limits.h

The file h/posix/limits.h is a substitute for the POSIX header file
<limits.h> . Actually, this file only contains POSIX material NOT present in the ANSI
<limits.h> (the real POSIX <limits.h> is a superset of the ANSI <limits.h>). The
directory h/posix/conf contains versions of h/posix/limits.h for various systems.
You should copy or link the most appropriate one to h/posix/limits.h , editing it if
necessary (see h/posix/conf/README .)

8.7. SRC/LIB/LIBUNIX
IPW provides substitutes for some ANSI library functions that may not be available

on all systems. The file src/lib/libunix/Makedefs controls the building of this
compatibility library. The directory src/lib/libunix/conf contains versions of
src/lib/libunix/Makedefs for various systems. You should copy or link the most
appropriate one to src/lib/libunix/Makedefs , editing it if necessary. Then, you
must copy or link the appropriate source files from src/lib/libunix/src into
src/lib/libunix .

8.8. BUILDING IPW
At this point, you should be able to run ipwmake in the src directory and build

the entire system:

% cd ˜ipw/src
% ipwmake install >& make.out &

Any errors in make.out (other than those explicitly marked ignored) indicate a prob-
lem, and should be tracked down before using IPW.

8.9. POST-INSTALLATION ISSUES
Certain IPW commands cannot (yet) be installed automatically, since they require

non-portable system header files and/or function libraries. At this writing, the follow-
ing commands must be installed by explicitly running ipwmake in the appropriate
source directory:

- 251 -

command requires
etc/mc -ltermcap

<suntool/canvas.h>
<suntool/scrollbar.h>
<suntool/sunview.h>
-lsuntool -lsunwindow
-lpixrect

etc/rastool

<X11/Xos.h>
<X11/Xlib.h>
<X11/Xutil.h>
<X11/cursorfont.h>
-lX11

etc/xim

Note that the distributed version of lib/ipwenv assumes that the mc command exists.
If you cannot compile mc, then you should change the definition of LC_WD in
lib/ipwenv .

Most shell scripts supplied with IPW require the getopt command, which is stan-
dard on many UNIX systems. If your system doesn’t already have a getopt command,
you should compile and install the public-domain version provided in src/etc/getopt .

If you will be developing your own IPW C programs, then you will probably want to
compile profiling and debugging versions of the IPW libraries, and lint libraries for
use with ipwmake lint . Run ipwmake lintlib , ipwmake -D , and ipwmake -P in
the appropriate library directories.

- 252 -

CHAPTER 9: SHORTCOMINGS

In this chapter we will explore some of IPW’s notable shortcomings. It should be
noted that some of these are artifacts of the current implementation, while others are
inherent in the design of IPW.

9.1. LACK OF A DATA DICTIONARY
IPW has no central data dictionary. While a data dictionary is normally associ-

ated with a database system, there are several aspects of IPW that, in retrospect, would
have benefited from greater centralization, including:

• image header keywords;

• command-line options;

• units of measure.

The current implementation of IPW allows each image header type to maintain its
own keyword name space. This has already led to duplication of some common key-
words (e.g., ‘‘units’’) across header types. As headers become more varied, the odds of
duplicate keywords having contradictory meanings can only increase.

Except for the use of -H to invoke a command’s usage message, there is no
enforced standardization of IPW command line options. For example, the -i option
variously introduces:

• an input file name;

• the number of bits per pixel;

• the name of a linear-quantization interpolation function.

This is partly an inevitable consequence of using single-character options; how-
ever, there is little excuse for not standardizing on certain option letters for the most
ubiquitous options (e.g., input file name).

Throughout IPW, different units of measure are used for the same phenomena.
For example, angles are specified in various places in:

• decimal degrees

• degrees, minutes, seconds

• radians

• trigonometric functions

It is not always obvious from context which representation should be used. In retros-
pect, common units of measure should have been defined, and standard functions pro-
vided for converting between the standard and alternate representations.

All of these problems can be partially attributed to a desire to allow decentralized
development. It was intended from the start that any IPW site could extend IPW, by
adding primitives, creating new image header types, etc. However, it is clear that a
mechanism is needed for ‘‘buying back’’ these scattered additions into a master copy of
IPW, and resolving any conflicts thus created.

9.2. PROBLEMS WITH COMMAND-LINE ARGUMENTS
Several problems have become evident with the IPW command-line argument

scheme. Type conversion of optargs is currently limited to a few built-in types (integer,

- 253 -

floating-point, string, etc.). An alternative method would be to let optarg type conver-
sion be handled by a user-supplied function [Allman 1989a], whose address would be
included in each option descriptor. This would allow arbitrarily complex optarg types
(subrange types, non-decimal integers, automatically-opened input files, etc.).

Limiting options to single characters adheres to existing UNIX practice and a pro-
posed standard [Hemenway 1984] , but, as mentioned in the previous section, leads
inevitably to overloading. At best, commands with several options will probably have at
least one extremely strained mnemonic (e.g., -b latitude). Possible solutions to this
include simply allowing multicharacter options, as does the IM Toolkit software
[Paeth 1986a] , or using an alternate option syntax that does not conflict with the UNIX
standard [Fenlason 1990].

A larger issue involves consistency in specifying multiple input files. There are
several ways to do this, all of which are used by IPW:

• multiple operands: command file1 file2 ...

• multiple bands: mux file1 file2 ... | command

• multiple options: command -opt file1 -opt file2 ...

While it would appear that any one of these models could supplant the others, there are
in fact good reasons for using all of them. The multiple-operands model is normally
preferred, both because delivering all input data on a single stream meshes most natur-
ally with the pipeline paradigm, and because it requires fewer open files than the
multiple-operands or multiple-optarg models (file descriptors can be a scarce resource).
The disadvantage of the multiple-operands model with respect to the other two models
is that it requires an additional mux operation if the desired inputs are separate files41.

For some operations, the multiple-operand model is arguably a more ‘‘natural’’
notation. For example, the current bitcom operates on multiple input bands. Yet a
frequent application of bitcom is to apply a mask to an image, and the mask is almost
certain to be stored separately, so an additional mux step is almost always required:

mux image mask | bitcom -a

versus

bitcom image mask

Having two versions of programs like bitcom seems an unsatisfactory solution to this
problem.

The multiple-optarg model is appropriate in situations where there are different
types of input. The easiest ways to distinguish these is by associating them with dif-
ferent options; e.g.:

convolve -i image -c kernel

However, it may also be appropriate to infer the data type from the input band order;
e.g., shade assumes that its input band 0 is slope and band 1 is azimuth, since that is
the output from gradient . It is not evident that this convenience should be sacrificed
for consistency.

41 mux itself is an example of an operation that requires the multiple-operand model.

- 254 -

9.3. SHORTCOMINGS OF THE DATA MODEL
Forcing the external pixel data to be byte-aligned buys processing efficiency at the

expense of increased external storage. This may prove to have been a bad decision as
both the average size and pixel precision of remotely-sensed imagery increases. To
illustrate this with an example we have already encountered, AVIRIS images have 10-bit
pixels, each of which IPW would store in 2 bytes, yielding 6 bits per pixel of non-data
padding. In a standard AVIRIS half-scene of 256 lines, 614 samples, and 210 bands,
these non-data bits would account for 24,756,480 bytes of external storage, and about
30 seconds of transfer time over an Ethernet with 800 KByte per second throughput (an
optimistic value).

This storage overhead can be partially alleviated by use of file compression algo-
rithms; for example, the UNIX compress utility [Welch 1984] deals particularly well
with ‘‘dead space’’ in files. However, this is an extra processing step that can consume
a great deal of processor time, especially during the compression (as opposed to
decompression) phase. It may become necessary to modify IPW’s external storage
scheme to use bit packing, although the tradeoffs in processing time and portability will
have to be carefully weighed.

The quantized storage of floating-point pixels as unsigned integers has yielded one
difficulty that appears unresolvable short of allowing floating-point pixels to be stored
externally. Some operations cannot predict the range of output pixel values, and thus
select the output quantization parameters before all of the output values have been
generated. It is thus necessary for these operations to divert the output values to a
scratch file, checking for minima and maxima as the output values are generated, and
then read the output data back from the scratch file and write it to the output file.
lincom is such an operation, since it cannot predict in advance the various combina-
tions of pixel values that will occur in any input sample. Assumptions could be made
using the most extreme values possible, but this would likely yield an unacceptably con-
servative quantization (i.e., loss of output precision). Thus far, this ‘‘two-pass’’ quanti-
zation has been deemed an acceptable price to pay for a single, portable external data
format.

Every IPW primitive that has both input and output images must deal with the
disposition of the input image headers. A problem arises when a header is copied to the
output image when the primitive has modified the pixel data in a way that renders the
header invalid. For example, the current implementation of lutx copies all of the
input headers to the output image. It is easy to see that an input lq header will very
likely be invalidated by the pixel value modifications performed by lutx . Yet, the only
way to deal with this problem would be to build knowledge of lq headers into lutx .
Given that new header types may be added to IPW at any time, it seems that building
knowledge of specific headers into programs like lutx is a bad idea. The current
implementation of IPW offers no easy solution to this problem, but it could be solved
with an extension to IPW discussed in Chapter 10.

9.4. SHORTCOMINGS OF THE PROCESS MODEL
The strictly sequential processing model imposed by pipelines has some obvious

disadvantages. The necessity to divert image data to a scratch file for multiple-pass
operations has already been mentioned. Similarly, some apparently trivial operations,
such as modifying an image header, require copying the entire image. We believe that
neither of these are sufficient justification for discarding the pipeline model, but they
are ‘‘hidden costs’’ imposed by the model that an application programmer or script

- 255 -

writer should be aware of.

The exclusive reliance on lookup tables to implement univariate point operations
can be clumsy at times. The doubling in size of a lookup table with each additional bit
of input pixel precision is not always obvious, until a program like lutx fails due to
memory exhaustion. Similarly, the use of text-based programs (e.g., interp) to gen-
erate lookup tables is practical for 8-bit values but prohibitively slow for 16-bit values;
this problem will become more acute as the average pixel precision of remotely-sensed
imagery increases [Esaias 1986, Goetz 1986]. Also, the primitives that manipulate
lookup tables deal exclusively with quantized pixel values, whereas it is often desired to
manipulate the de-quantized floating-point values.

Many IPW primitives use masks, but not completely consistently. Some primi-
tives, such as bitcom , use an option to indicate that the last band is a mask, while
other, such as hist , allow a mask to be specified as a separate file. This is largely due
to masks being added late in the design cycle, but it should be standardized, both at the
command-line level, and with library support for masking operations.

IPW neighborhood operations do not deal with image boundaries in a standard
way. For example, convolve simply passes boundary pixels through unaltered to the
output image, while gradient uses special variants of the slope and azimuth algo-
rithms to calculate boundary values. Neither of these is completely satisfactory.

9.5. SHORTCOMINGS OF THE PROGRAMMING MODEL
The principal shortcoming of the IPW programmer’s model has been excessive

duplication of code. For example, there are substantial similarities between the rou-
tines that manipulate the various types of headers. A great deal of ‘‘boilerplate’’ code in
IPW primitives could probably be generated automatically.

An obvious candidate for simplification is the IPW error handling facility.
Currently almost all low level errors are passed back to the application programmer as
failure codes, yet almost always the programmer’s response is to call error , which ter-
minates execution, with an error message that could usually have been generated
automatically. A slightly more draconic treatment of errors by the library routines, by
simply calling error directly when an error known to be unrecoverable occurs, would
drastically simplify the programmer’s interface to IPW. The loss of control could be
somewhat mitigated by allowing the programmer to specify a customized low-level
error handler, as an alternative to the standard IPW error handler.

- 256 -

CHAPTER 10: PRINCIPAL CONTRIBUTIONS

In spite of the criticisms of the previous chapter, we believe that IPW has largely
proven to be a successful system. The underlying design principles, while not without
shortcomings, have provided great flexibility in adapting the system to specific investi-
gations, even in IPW’s current experimental state. In this chapter, we highlight what
we believe are IPW’s salient contributions to the field of image processing for remote
sensing and Earth science.

10.1. EXPLOITATION OF UNIX
Certainly one of the most successful aspects of IPW is its exploitation of the UNIX

operating system. The UNIX command language, file system, and broad assortment of
programming and text processing tools, have all been pressed into service. Several IPW
command are UNIX shell scripts. Many of these scripts use the text processing
language awk to perform complicated data transformations that would otherwise
require compiled programs to implement. IPW is maintained with the UNIX tools make
and rcs , and is portable largely because of the standardization of the UNIX program-
ming environment. The decision to rely heavily on those parts of UNIX known to be
portable has repaid us handsomely in the avoidance of duplicate, and in keeping the
overall size of IPW down to an easily managed level.

10.2. PORTABILITY
Considerable effort has been expended to ensure that the IPW source code is as

portable as possible across a variety of UNIX environments. We have been paid back by
the relative ease of porting IPW to completely new architectures. This gives us consid-
erable freedom in purchasing new image processing hardware, since we are virtually
certain of being able to run IPW on it.

In addition to portable source code, IPW has a portable image data format, with
ancillary data stored as printable ASCII text, and pixel data stored as unsigned binary
integers. This has two benefits. It allows IPW images to be moved transparently
between different hosts (subject to possible byte-swapping of multibyte pixel data, han-
dled automatically by the pixio functions). Since the portable data format is a simple
one, it also makes it fairly easy for IPW programs to communicate with programs out-
side IPW. It has thus proven fairly simple to ‘‘step sideways’’ from an IPW processing
sequence, to take advantage of such non-IPW software as graphics and statistical pack-
ages.

10.3. PIPELINES AND PRIMITIVES
The central paradigm of IPW processing is a pipeline of low-level generic com-

mands, or ‘‘primitives’’. This paradigm has proven robust and versatile. It allows new
processing sequences to be constructed and tested quite rapidly. Components of a pipe-
line can easily be replaced if a better method becomes available. In a networked
environment, computationally intensive components can be targeted to the most capa-
ble remote processors42.

42 We look forward to evaluating IPW on a tightly-coupled multiprocessor system.

- 257 -

The pursuit of fundamentality in the assembly of the basic set of primitives has
led to some interesting idioms. The lookup table transform operator lutx has emerged
as the basic univariate point operation; implementing a new operation now involves
merely constructing the appropriate lookup table. The common operations of selecting
a contiguous subset of an image for processing, in the spatial or spectral dimensions,
has been implemented in the separate primitives window and demux, rather than in
the IPW I/O system. The necessity of supporting the pipeline paradigm has led to
implementing multivariate point operations as combinations of image bands, rather
than as combinations of multiple images.

The implementation of the pipeline components as standalone UNIX programs has
been a largely positive experience. Although it does lead to some duplication of startup
and error-handling code, the benefits of ease of replacement, and of similarity to the
way the rest of UNIX works, have far outweighed these minor shortcomings.

10.4. IMAGE DATA FORMAT
The adherence to a single image data format in IPW has greatly simplified the

overall architecture of the system. In addition to not having to provide software sup-
port for a variety of formats, the presence of a single image format encourages the use
of images for a variety of non-obvious applications. For example, IPW histograms and
lookup tables are both stored as single-line images, which allows them to be edited,
displayed, etc. by all of the IPW primitives.

BIP interleaving has paid off as we have begun to process imaging spectrometer
data, which has hundreds of bands. Other interleaving schemes would require a pro-
gram to maintain a prohibitive fraction of an image in memory in order to construct a
spectrum for a single sample. Simple benchmarks have convinced us that BIP incurs no
measurable additional overhead when compared with more popular interleaving
schemes.

10.5. LINEAR QUANTIZATION
One of the most significant contributions of IPW is the promulgation of the linear

quantization method for encoding floating-point values into binary integer pixels.
Many image processing operations simply cannot be carried out entirely in the integer
domain, yet external storage of binary floating-point data would cause insurmountable
portability problems. The linear quantization method has allowed us to keep a portable
(and easily displayed) image data format, and at the same time gives us greater control
over the range and precision of the floating-point pixel values than we would have if we
used binary floating-point data directly.

10.6. DISPLAY NOT REQUIRED
The independence of IPW from any particular display hardware has benefited us

in two ways. First of all, it contributes to the freedom we have to select the most cost-
effective image display hardware. Secondly, since IPW does not rely on the special pro-
cessing capabilities of any particular display system, we need not display an image in
order to process it. This may seem like a phantom benefit but in fact most of the image
processing we do does not involve displaying the final output image. It would be a
great imposition if we had to monopolize display hardware for a processing sequence
that could easily take place in a ‘‘batch’’ mode.

- 258 -

10.7. USE OF NON-IMAGE DATA
IPW’s ability to integrate point, vector, and polygon data with existing images has

proved critical to several investigations. For example, IPW has been used to extrapo-
late snowpack properties over a digital elevation image of an alpine watershed, from a
sparse set of points representing field snowpack measurements [Elder 1989]. This
would have been impossible without some way to insert the field measurements into the
image datasets.

The definition of the basic point data type as an ASCII (location, value) tuple sim-
plifies the preparation of the point data for ingestion by IPW (much field data is already
in this format). Point data are converted to line segments and polygons by a single
primitive which interpolates image locations as needed. Beyond this there are no expli-
cit point data manipulation tools in IPW, since these data may be easily processed with
the standard UNIX text utilities.

- 259 -

CHAPTER 11: FUTURE DIRECTIONS

In this chapter we describe possible further work on IPW. Some of the actions sug-
gested herein are direct responses to shortcomings noted in Chapter 9, while others are
more general directions that seem to be indicated by the evolution of the environments
in which IPW is used.

11.1. NEW PRIMITIVES
There are several needed primitives missing from the current implementation of

IPW. Some of these are under active development, while others will hopefully be pro-
vided by users of IPW who are inspired by this document, or by their own needs.

The most obvious omissions from IPW are generic geometric primitives for image
warping. At this site (UCSB) we have previously implemented a geometric processing
suite that will be included in a future version of IPW. The basic design premise is that
mapping, or the determination of correspondences between locations in two images,
should be completely separate from resampling, or the computation of pixel values at
non-integral locations. We have designed a primitive resamp whose inputs are a
source image, and a 2-band resampling map, whose geometry is that of the desired
output image, and whose pixel values are the line (band 0) and sample (band 1) coordi-
nates of the corresponding sample in the source image. resamp interpolates the
source image to obtain a pixel value at this (possibly non-integral) location, and places
this value in the output image. The beauty of this scheme is that the generation of the
resampling map is a completely separate problem, which may be attacked by a variety
of methods (global functions, triangulation, etc.). For completeness, we have designed a
polymap primitive which generates a resampling map based on a BIH and set of polyno-
mial coefficients.

Additional utility geometric routines are needed. The problem of border effects in
neighborhood operators could be solved by a primitive which padded an image with
either extrapolated or constant borders equal to one-half the neighborhood size. Primi-
tives like dither could be generalized by supplying a primitive which repeatedly tiled
a small image (such as a dither matrix) up to the size of a target one; the two could
then be combined by a multivariate point operation. Both of these ideas are borrowed
from [Paeth 1986a].

IPW needs a simple way to generate constant images, both as test patterns, and as
backgrounds onto which data can later be scribed with edimg .

IPW currently contains no frequency-domain routines. A minimal primitive would
be a one-dimensional FFT, which could be combined with transpose to yield two-
dimensional Fourier transforms.

The set of multivariate point operations needs a primitive to perform boolean com-
binations of input bands; i.e., the greater or lesser of all input values. An even more
general primitive would be one that accepted an arbitrary algebraic expression to
specify the input band combinations, but it is unclear how this could be efficiently
implemented; in the HIPS image processing software system [Landy 1984] this was
accomplished by actually recompiling the primitive for each new expression.

Certain non-image support primitives would be quite useful. For example, an
early instructional version of IPW [Paddon 1988] included a program which read the
variance-covariance matrix output by mstats and wrote normalized eigenvectors
which could be used as coefficients with lincom to generate principal component

- 260 -

images.

In addition to such ‘‘bridge’’ programs (i.e., programs that facilitate the connection
of existing IPW programs), there are a variety of non-image-oriented operations that
are essential to the analysis of remotely-sensed data. IPW has already been used to
implement some of these, such as radiative transfer models for deriving atmospheric
corrections [Li 1987]. We anticipate that generic specifications for such operations,
analogous to the specifications of the existing IPW primitives, will have to be developed.

11.2. USER INTERFACE
IPW has deliberately avoided the issue of a modern user interface. The IPW primi-

tives are logical targets for manipulation for high-level, window-based interface, but it
seems pointless to build such functionality into every IPW primitive. Recently, how-
ever, there have appeared image processing systems which exploit the graphical con-
struction of processing pipelines [Rasure 1987]. Another promising development is
availability of generic window interfaces that are programmable at a level analogous to
shell scripts [Perkins 1988, Musciano 1988], and could thus be bound to IPW primitives
without a complete redesign of IPW. These appear to be logical directions for growth in
the IPW user interface.

In the short term, some simple tools for locating existing IPW facilities, analogous
the UNIX apropos and VMS help commands, would be extremely useful. These would
accept less precise specifications than ipwman , allowing a user to locate a command or
library routine by keyword or functional grouping.

The notion of masks needs to be much more fully integrated into IPW than it is
now. Masks are currently supported on a program-by-program basis. What is needed
is a unified model of masking operations, including multiband masks (i.e., an N-band
mask applied bandwise to an N-band image), presented to the user in such a way that
the masks become a natural means of expressing irregular regions in IPW. This will go
a long way towards bridging the gap between IPW and vector-based GIS systems.

11.3. PROGRAMMER INTERFACE
Perhaps the most radical change in the IPW programmer interface will be effected

by the widespread availability of the C++ language [Stroustrup 1986]. A migration to
an object-oriented structure should help solve many of the problems related to code
replication. We believe that future versions of IPW will migrate to C++, initially simply
as an ANSI C environment.

IPW currently makes no use of compiler construction technology, yet there are
some obvious candidates for it at the programmer level. A generalized algebraic
expression parser could be put to use in an algebra primitive. Even more useful would
be the development of a ‘‘little language’’ to describe external data formats, both IPW
and foreign. This would greatly simplify the development of both new IPW headers, and
of ingest programs for foreign data types.

11.4. DATA REPRESENTATION
For reasons outlined in §9.3, IPW will probably have to incorporate bit-packing of

pixel data in its external data format. Alternatively, a more general means of reducing
image storage overhead would be an entropy-preserving compression scheme optimized
for image data [Rice 1983]. Studies of multispectral remote-sensing data have shown
that compression ratios of up to 3:1 may be achieved by real-time algorithms using only

- 261 -

a 2-pixel neighborhood [Chen 1987]. Both bit-packing and generic noiseless compres-
sion could be implemented in the pixio layer of the IPW I/O subsystem, and would not
require any changes to existing application programs (save those which call the uio
I/O layer directly); however, these compression schemes will be difficult to implement
both portably and efficiently.

Full portability of IPW pixel data between networked heterogeneous machines
needs to be implemented. At a minimum, this requires automatic byte-swapping of
pixel data where necessary (the BIH already contains a byteorder field which can be
used to implement this). In the long term, alternate data representations more suitable
for a networked environment should be investigated [Sun 1987, Rew 1989].

- 262 -

APPENDIX A: CODING STANDARD

This standard contains rules and guidelines to which all IPW source code should
conform. A working knowledge of the C language and the IPW and UNIX programming
environments is needed to make effective use of this standard.

The standard is divided into three sections

• style

• portability

• performance

The style section is the most comprehensive, since it addresses the twin goals of
readability and maintainability. IPW functions and programs are intended to be
general-purpose tools, and as such must be understood, and often maintained
(debugged and modified), by persons other than the author; thus, it is essential that
code be designed from the beginning with the goal of easing the task of the human
reader. The underlying purpose of the code must be evident in its structure, nomencla-
ture, and formatting.

The ubiquity of the C language, and the uniformity of the UNIX interface, create
the possibility of running identical IPW source code in a variety of environments. To
realize this goal, however, portability standards are required, both to acquaint the
programmer with legal constructs that are nonetheless empirically non-portable, and to
specify how best to deal with non-portable code when its use is unavoidable.

Finally, since IPW programs are likely to be used with large image data sets, there
must be performance standards that specify acceptable efficiency techniques that do
not conflict with the more important style and portability standards.

The following textual conventions are used in this standard:

C language text that should be reproduced literally is shown in constant-width type.

C language text that should be replaced by the programmer is shown in italic type.

indent level refers to the tab stop at which a source line begins.

white space means any combination of the ASCII characters space, newline, or hor-
izontal tab.

A.1. STYLE
The primary goal of the IPW style standards is readable code. Several techniques

are employed to achieve this goal:

• straightforward implementation

• internal documentation

• uniform style

Simplicity is perhaps the most important readability technique: the less compli-
cated a piece of code is, the easier it will be to understand, and the more confidently it
will be used and modified. In describing the original implementation of UNIX, its chief
designer noted that:

‘‘Throughout, simplicity has been substituted for efficiency. Complex algorithms are
used only if their complexity can be localized.’’ [Thompson 1978]

- 263 -

The style standards encourage simplicity by choosing the most straightforward path
through the varieties of possible C implementations of common coding situations.

IPW source code should be self-documenting. The style standards encourage this
in a variety of ways: through standard comment formats; through guidelines for name
selection; and through guidelines for modularization, so that the overall program struc-
ture reflects the underlying problem.

Every effort is made to avoid variations in the appearance of the source code that
do not directly correspond to some aspect of the underlying problem:

‘‘Every time we gave someone responsibility for a new module he or she would
rewrite it according to his or her standards (allegedly to clean up the other person’s
bad habits). This process never converges and I feel that it is similar to the dog or
wolf who stakes out his ‘‘turf’’ by urinating on each bush on its perimeter.

Only coding conventions stop this process.’’ [Stonebraker 1986]

For example, C programmers have traditionally been vociferous advocates of numerous
styles of placing the {} around compound statements. Some common styles include:

control { control control
statements { {

} statements statements
} }

[Kernighan 1978, Minow 1984, Plum 1984]. It has yet to be demonstrated that any
brace-placement style is clearly superior. However, most advocates of one particular
style would agree that use of a single style (even if not their favorite) is important; oth-
erwise, the reader of the code must decide whether or not a sudden change in brace-
placement style is indicative of some logical change in the code. In such cases, the style
standards arbitrarily mandate the use of one out of several variant renderings. Of
course, in situations where one of several otherwise equivalent constructs is clearly the
most readable, use of that construct is mandated.

Many of the more trivial style standards (format of comments, use of white space,
etc.) can be implemented mechanically. An initialization file for the C source code for-
matting utility indent 43 is provided in $IPW/pub/indent.pro ; use of this file causes
indent to adhere to most of the IPW style standards.

A.1.1. Comments
Comments are intended to aid in the understanding of the code. You may assume

that the person reading the comments knows the C language about as well as you do;
however, you may NOT assume that he/she understands anything about the particular
problem that your code is trying to solve. This leads to the general rule, ‘‘comment the
purpose of the code, not the implementation’’ [Lapin 1987]. Extraneous comments
about obvious features of C (e.g., /* increment i */) will cause the reader of your
code to ‘‘tune out’’ the comments altogether.

There are four distinct styles of comments used in IPW source code:

• End-of-line comments are allowed ONLY on declarations and #define s. The
/* of an end-of-line comment begins at tab stop 5 (column 41), or the next

43 free software from UC Berkeley; optionally distributed with IPW

- 264 -

available tab stop. The */ of an end-of-line comment begins at tab stop 9 (column
73), or the next available column. End-of-line comments may NOT span the end of
the line; this can cause misleading line numbers in lint and cc error messages.

• One-line comments are used to annotate a specific property (e.g., a spurious
lint error) of the immediately following statement (no intervening blank lines).
One-line comments are preceded by at least one blank line, and always begin in
column 2.

• Block comments separate ‘‘paragraphs’’ of code. There should be no blank lines
preceding or following a block comment, that would not otherwise be required by
these standards. The /* of a block comment is on its own line and begins in
column 2. Each line of a block comment has a * before any text. The * s are vert-
ically aligned with the first * in the first line of the block comment. The last line
of a block comment is the closing */ .

• Header comments appear before any global definitions. Header comments begin
in column 1.44 The leading /* and trailing */ are on their own lines. Each line
in the body of the comment begins with a ** . A header comment is preceded and
followed by at least one blank line.

Examples:

#define ERROR (-1) /* description of "ERROR" */

/*
** NAME
** foo -- a nonsense function
**
...
*/

int
foo(bar)

int bar; /* description of "bar" */
{

... C code ...
/*

* a block comment describing the purpose
* (as opposed to the implementation)
* of the next several lines
*/

... C code ...

/* a one-line comment describing the next statement */
... C code ...

}

44 indent , when initialized by $IPW/pub/indent.pro , will not reformat comments that begin in

column 1.

- 265 -

The top-level unit of documentation is a globally-scoped (i.e., defined outside any
block) function or variable. Each module (compiled source file) should contain exactly
one global object.45 Preserving a one-to-one correspondence between modules and link-
able objects minimizes the amount of unused code that gets linked into an executable
program.

All global objects in the code must be commented in the style of a UNIX manual
page, using the IPW header comment style. As a rule of thumb, these comments should
be sufficiently detailed to allow the reader to use the object without reading the rest of
the code. In fact, IPW manual pages are generated automatically from these comments
by the ipwman command.

Procedural code should be thought of as consisting of ‘‘paragraphs’’ of C state-
ments. The purpose of each paragraph of statements should be described in a preced-
ing block comment. Block comments should be terse, and should amplify, NOT simply
re-state, the following code. In particular, comments should not contain pseudo-code:
the actual code should be as readable as any pseudo-code description.

If a paragraph of code implements a published algorithm, then the preceding block
comment should contain a full reference to the publication, including page and equation
numbers.

One-line comments should not be used where a block comment would achieve the
same purpose, since the change in comment styles is inherently distracting. Instead,
one-line comments should be used chiefly to call attention to ‘‘gray areas’’ in the code,
which might require maintenance. The most frequent use of one-line comments in IPW
is as directives to the lint utility (e.g., /* VARARGS */ before the definition of a func-
tion with a variable number of arguments.) The need for more general documentation
at the one-line comment level should be obviated by clear code and mnemonic identif-
iers.

Variable definitions always contain an end-of-line comment. If the permissible
values of the variable are restricted to a subrange of its type, then the subrange should
be specified in the comment. Similarly, any physical units associated with values of the
variable (meters, degrees, etc.) should be documented in the end-of-line comment,
unless they are obvious from the variable name.

Sample header comments for main s, functions, global variables and header files
are given below. Non-mandatory sections of the comments should be omitted if they
would otherwise be empty. All header comment text other than the section headings is
indented from the leading asterisks by at least 1 tab stop. Follow these formats care-
fully: ipwman depends on them to function properly.

A.1.1.1. Program header comments

The following section headings may appear in the header comments for a main
function, in the order listed:

45 A module may contain more than one function if those functions share one or more top-level

static objects; see §A.1.8.

- 266 -

/*
** NAME
** SYNOPSIS
** DESCRIPTION
** OPTIONS
** DIAGNOSTICS
** FILES
** EXAMPLES
** SEE ALSO
** NOTES
*/

The NAMEsection contains a single line containing the name by which the program
SHOULD be known (which may not be the name of the actual installed binary version
of the program), followed by -- , followed by a ‘‘verb+object(s)’’ description of the pro-
gram:

** NAME
** hist -- compute image histogram
**

The SYNOPSISsection contains a minimal schematic description of the program’s com-
mand line; listing all possible options and operands. Options and operands which are
not mandatory are enclosed by [] s:

** SYNOPSIS
** hist [-m mask] [image]
**

Note the use of symbolic values for option arguments and operands. Subsequent refer-
ences to these symbolic values are delimited by {} s, to indicate that the symbolic
values will be replaced by actual, user-specified values when the command is run.

The DESCRIPTIONsection contains a brief narrative description of the program:

** DESCRIPTION
** Hist reads {image} (default: standard input) and computes
** its histogram. The histogram is written to the standard
** output as a single-line IPW image, whose sample offsets
** represent the pixel values in the input image, and whose
** pixel values are frequency counts.
**

The optional OPTIONSsection contains a list of each option the program accepts. Each
option is described by an indented paragraph with the option as a hanging tag:

** OPTIONS
** -m histogram only those pixels masked by nonzero values
** in the image {mask}.
**

The optional DIAGNOSTICS section contains a description of any ‘‘non-obvious’’ error
messages that the program may generate, especially those related to otherwise
unstated restrictions on the program’s options or input data. The actual text of the

- 267 -

error message is reproduced, followed by an explanation indented 1 tab stop. Variable
portions of the error message text are delimited by {} s.

** DIAGNOSTICS
** "band {number} has too many bits per pixel"
**
** The precision of the specified band is such that a
** histogram of that band would not fit in memory.
**

The optional FILES section contains a list of any ‘‘hidden’’ files that the program will
access (i.e., not specified explicitly on the command line). Each filename or filename
pattern is followed by explanatory text, indented 1 tab stop. Variable portions of a
filename (e.g., such as would be replaced by a process-ID) are delimited by {} s.
Environment variables are indicated by a leading $.

** FILES
** $TMPDIR/hist{NNNNN} scratch file
**

The optional EXAMPLESsection contains one or more examples of UNIX command lines
invoking the program. Especially useful are examples that demonstrate often-used
pipelines combining this program with other IPW programs:

** EXAMPLES
** The following pipeline will plot the input image’s histogram
** on the standard output:
**
** hist image | grhist | plot
**

The optional SEE ALSOsection contains a comma-separated list of related IPW modules
whose header comments may prove useful to someone attempting to understand this
program. Following this list, any relevant references to the published literature should
appear (e.g., a paper describing the algorithm the program employs):

** SEE ALSO
** grhist, histeq
**
** Frew, D.H. (1989) "Thaumaturgic acceleration of image
** histogram computations,", COG Tech. Report #7, Berkeley, CA
**

The optional NOTESsection contains any additional information of which a user of the
program should be aware, including, but not limited to, known bugs or deficiencies in
the current implementation, comments on algorithms or heuristics employed, or plans
or suggestions for future enhancements. The NOTESsection may also contain informa-
tion about restrictions on the use of the program that are not discussed in the DIAG-
NOSTICSsection.

- 268 -

** NOTES
** The number of bits per output pixel is the minimum
** necessary to accommodate the largest value in the
** histogram.
**

As a rule, any information that is maintained by the RCS version control software
(modification dates, authors’ names, etc.) should NOT appear in the header comments.
This information will appear elsewhere in the source code, and can be extracted along
with the header comments for further formatting.

A.1.1.2. Function header comments

The following section headings may appear in the header comments for a library
function, in the order listed:

/*
** NAME
** SYNOPSIS
** DESCRIPTION
** RETURN VALUE
** ERRORS
** GLOBALS ACCESSED
** APPLICATION USAGE
** SEE ALSO
** NOTES
*/

(Sections whose comments are the same as previously described are omitted from the
following discussion.)

The SYNOPSIS section contains an old-style C prototype for the function.46 The
appropriate #include statements should also appear here if any header files (besides
ipw.h) must be included by the function’s caller:

** SYNOPSIS
** #include "bih.h"
**
** BIH_T **bihread(fd)
** int fd;
**

The optional RETURN VALUEsection contains a brief description of the function’s possi-
ble return values:

** RETURN VALUE
** pointer to array of BIH_T pointers; else NULL if EOF or
** error
**

The optional ERRORSsection contains a description of any IPW errors that are logged

46 ANSI prototypes are not (yet) portable.

- 269 -

by the function, when the return value indicates an error. The format is the same as
for the DIAGNOSTICSsection mentioned previously.

** ERRORS
** "{name}" header: bad band "{band}"
** The band number is outside the range previously
** specified in this header
**

The optional GLOBALS ACCESSEDsection contains a list of any global variables
accessed by this function:

** GLOBALS ACCESSED
** _bih[fd] bihread’s return value is also stored here
**

The APPLICATION USAGEsection contains a brief description of the context in which an
application program might call the function.

** APPLICATION USAGE
** bihread is called by application programs to ingest BIH
** headers.
**

The NOTESsection contains, in addition to the topics already mentioned, a description
of any state information that the function preserves between successive calls (i.e. in
static variables).

A.1.1.3. Variable and header file header comments

The following section headings may appear in the header comments for a global
variable or header file, in the order listed:

/*
** NAME
** SYNOPSIS
** DESCRIPTION
** APPLICATION USAGE
** SEE ALSO
** NOTES
*/

(Sections whose comments are the same as previously described are omitted from the
following discussion.)

The SYNOPSISsection contains either a sample #include directive for the header file:

** SYNOPSIS
** #include "bih.h"
**

or a sample declaration for the global variable:

- 270 -

** SYNOPSIS
** #include "_pixio.h"
**
** extern PIXIO_T *_piocb[];
**

A.1.2. Names
Variable names should be self-documenting; e.g., nsamps for ‘‘number of samples’’,

i_fd for ‘‘input file descriptor’’, etc. The meaning of a variable name, and the usage of
the corresponding variable, should be invariant throughout the program.

Names of constant macros and ‘‘unsafe’’ function macros (those that cause any of
their arguments to be evaluated more than once) should not contain any lower-case
alphabetic characters. Other identifiers, including ‘‘safe’’ function macro names, should
not contain any upper-case alphabetic characters. Word breaks in names should be
indicated by an underscore, not by capitalization.

Example:

#define PIPE_BUF 4096

#define DIM(a) (sizeof(a) / sizeof(a[0]))
#define strsize(s) (strlen(s) + 1)

static int line_number; /* right */
static int lineNumber; /* wrong */

In general, case alone should not be used to distinguish names — portability considera-
tions aside, the distinction is not strong enough visually.

Global names must be longer that 1 character. However, the following traditional
1-character local names may be used:

c ASCII character
i,j,k array or loop index
m,n count or loop limit
p,q pointer
s pointer-to-string

The following 1-character prefixes are also widely used in IPW source code:

i_ input image
m_ mask image
n number of
o_ output image

The suffix p indicates ‘‘pointer to’’. A double-indirect pointer is indicated by pp .

Long names should differ from one another by more than 2 characters, or by an
obvious prefix (not suffix). Certain characters that are easily confused (e.g., 1, l , and
I ; and 0, O, and Q) should not be relied on to distinguish different names. Finally,
possible phonetic confusion between a name’s ‘‘sound’’ and its meaning should be
avoided; a classic example is inch for ‘‘input character’’ [Plum 1984].

- 271 -

Function names should follow the standard pattern of ‘‘object + verb’’; e.g.,
geohmake constructs a new image geodetic header. Similar functions should have simi-
lar names; e.g., xxxhmake is the common pattern for functions that construct image
headers.

A.1.3. White space
Properly used, white space in source code contributes significantly to its readabil-

ity. However, lack of standard usages for white space can lead to confusing stylistic
variations. The following standards are admittedly arbitrary, but adherence to them
helps minimize distracting and essentially spurious variations in the appearance of the
IPW source code.

White space is MANDATORY in the following circumstances:

• preceding and following C keywords (except at the beginning and end of a cast)

• preceding and following binary operators

• following ; and ,

White space is PROHIBITED in the following circumstances:

• preceding ; and ,

• between a function name and (

• on the concave side of a (or)

• between a unary operator and its operand

Blank lines are MANDATORY in the following circumstances:

• before each case or default in a switch

Blank lines are PROHIBITED in the following circumstances:

• within an expression or simple statement

Source lines that are too long must be broken by inserting a newline, after either a
comma or a binary operator. The continuation line should be indented 1 space more
than the immediately preceding (, or 2 spaces more than the immediately preceding =,
as appropriate.47

Examples:

printf("Usage: %s options ...\n",
progname);

if (a < b &&
a > A_MAX) {

...
}

result = f(a) +
f(a * b);

The use of embedded form-feed characters to paginate source code is discouraged: it is
to easy to add or delete source lines without remembering to adjust the pagination, and

47 This level of control over indenting is difficult to achieve with indent alone.

- 272 -

readily-available tools exist to paginate C source code automatically.

A.1.4. Indentation and braces
A standardized style of indentation and brace placement enhances readability by

making the physical layout of the code reflect its logical structure. The style used in
the IPW source code is derived from the style popularized in the original C language
textbook [Kernighan 1978].

A { is placed on the same line as the associated control statement, preceded by at
least one blank. A } is placed on a line by itself at the same indent level as the associ-
ated control statement (except for the do-while construct; see example). The indent
level between braces is increased one tab stop.

Examples:

for (i = 0; i < n; ++i) {
(void) foo(i);

}

while ((c = getchar()) != EOF) {
putchar(c);

}

do {
(void) foo(i);

} while (--i > 0);

if (i < 0) {
lt0 = TRUE;

}
else if (i == 0) {

is0 = TRUE;
}

switch (option) {

case ’b’:
bflag = TRUE;
break;

default:
error("%c: bad option", option);

}

Braces may NOT be elided for one-line blocks. One often needs to add statements
to a block, and having to remember to add the braces as well unnecessarily complicates
maintainability.

For function definitions, both braces are placed in column 1, and the formal argu-
ment declarations are indented one level. Any storage class or type specifiers are
separated from the function name by a single newline.

- 273 -

Example:

int
abs(i)

int i;
{

...C code...
}

Braces may NOT be elided in multidimensional aggregate initializers. The inner-
most } in an aggregate initializer MAY be on the same line as its corresponding { . In
general, the layout of an aggregate initializer should reflect the structure of the aggre-
gate.

Examples:

fpixel_t lap_kernel[3][3] = { /* Laplacian kernel */
{0.0, -1.0, 0.0},
{-1.0, 4.0, -1.0},
{0.0, -1.0, 0.0},

};

int bytebits[] = {1, 2, 4, 8, 16, 32, 64, 128};

A.1.5. The C preprocessor
The C preprocessor is a powerful tool for enhancing the readability and maintai-

nability of C source code. Use of macros to parameterize literal constants allows those
constants to be easily changed should the need arise, and is a useful form of documen-
tation. Collecting oft-used macros and declarations into header files simplifies their
maintenance.

Within a source file, preprocessor directives are grouped and ordered as follows:

• system-level #include

• IPW #include

• local (program or module) #include

• #define constants

• #define macros

Each group is preceded by a blank line.

Preprocessor directives always begin in column 1. There is no whitespace between
the # and the directive name.

In #define directives, the macro name begins at tab stop 1 (column 9) and the
replacement text begins at tab stop 3 (column 25), or at the next available tab stop. In
all other directives, a single space separates the directive from the subsequent expres-
sion, filename, etc.

- 274 -

Examples:

#include <stdio.h>

#include "ipw.h"

#include "lutx.h"

... header comments would go here ...

#define LUT_NBITS 8
#define LUT_SIZE (1 << LUT_NBITS)

#define VALID_IDX(i) ((i) >= 0 && (i) < LUT_SIZE)

A.1.5.1. Macros

As a general rule, source code should contain no embedded literal constants. The
two principal exceptions to this are strings controlling formatted output (e.g., in
printf calls), and small integers used in loop indices or relative subscripts. All other
constants should be replaced by #define d macros. Not only does this make the code
vastly easier to modify, but if the macro names are carefully chosen, they can contri-
bute significantly toward making the code self-documenting.

Constants whose values depend on the values of other constants should be so
defined.

Example:

#define N_PIXEL_BITS 32 /* wrong */
#define N_PIXEL_BITS (sizeof(pixel_t) * CHAR_BIT) /* right */

Constants whose values cannot be changed (i.e. they exist as macros only for readabil-
ity) should be appropriately commented.

Example:

#define FALSE 0 /* boolean F: MUST BE 0 */

Use of macros to extend or redefine the syntax of C, or to redefine C keywords,48

should be avoided. Someone who knows C should not have to learn some strange new
dialect in order to understand your code.49

Any macro replacement text containing operators should be fully parenthesized,
including an outermost set of parentheses around the entire replacement text. Argu-
ments in function macro replacement should also be parenthesized, in case they expand
into expressions containing operators.

48 Some redefining of keywords is necessary for portability. All of this should be handled by
ipw.h .

49 As did UNIX system programmers confronted with the source for the Version 7 sh , written in
a bizarre mix of C and Algol 68, the latter mapped into C by macros.

- 275 -

Function macros should in general not contain C keywords or blocks of state-
ments; this hinders readability by concealing the logic of the program.

Although conditional compilation is primarily a portability tool, two applications
are important in code maintenance. To temporarily disable a section of code, use the
construct

#if 0
/* code to be disabled */
#endif

instead of /*...*/ ; this avoids the problem of nested comments.

All library functions should contain, in the same source file, a main routine that
can be conditionally compiled with the function to perform stand-alone tests. IPW uses
the symbol TEST_MAINto control such compilation.

Example:

int
func()
{

/* code for func() */
}

#ifdef TEST_MAIN
main()
{

/* code which tests func() */
}
#endif

This code should appear at the end of the source file.

A.1.5.2. Header files

Header files should contain any #define s, typedef s, or extern declarations
that would otherwise be duplicated across multiple source files in a program or library.

Header files should be functionally organized; e.g., geoh.h contains the declara-
tions, typedef s, etc. needed to manipulate geodetic image headers. Header files
should not include other header files;50 this tends to obscure dependencies between dif-
ferent components of IPW, of which the reader of the code ought to be aware. Of course,
the header comments in a header file should mention any other header files that the
header file depends on (except ipw.h , which all header files are assumed to require).

In the #include directive, UNIX system header file names should always be
enclosed in <>s; while IPW header file names should always be enclosed in "" s. Note
that all system header files normally needed by IPW programs are included automati-
cally by ipw.h .

50 ipw.h is an exception, since it must conditionally substitute IPW header files for nonportable

system header files.

- 276 -

The first and last lines in a header file should comprise a conditional ‘‘wrapper’’,
which prevents the file from being #include d more than once in the same compilation:

#ifndef H_ xxx
#define H_ xxx
...
/* H_ xxx */
#endif

where xxx is the capitalized name of the header file, without the .h extension.

#include directives should always be near the top of a source file, immediately
preceding the header comments. This serves to emphasize the module’s dependencies
on the ‘‘outside world.’’ #define directives may precede a #include if they would
modify the included file’s behavior; however, with the exception of the conditional com-
pilation controls in ipw.h , this should not be necessary. ipw.h is always the first in a
sequence of #include directives.

A.1.6. Declarations
No more than one name should appear in a declaration. The ease of modification

this affords is well worth the extra text consumed.

Local objects should be declared close to their point of first use. In practice, this
implies that block-level declarations should be used freely, and that individual blocks
should be kept short. Local declarations should never override declaration made at a
higher level.51

Local function declarations should be avoided, by one of the following techniques:

• Declare all functions at the top level, either in header files or near the beginning
of the source file.

• Define static functions before global functions in the source file, so there are no
forward references.

Declarations are indented at the same level as the block in which they occur. A
storage class specifier, if present, is separated from the following type specifier by a
single blank. The identifier is indented 2 tab stops from the prevailing indent level. In
pointer declarations, identifiers with leading * s may be back-indented the appropriate
number of spaces so that the first character of the identifier name begins at the tab
stop. An initializer, if present, is separated from the identifier by a single space.

51 lint will catch this.

- 277 -

Example:

{
static bool_t already = FALSE;/* ? already called */

pixel_t *buf; /* -> image line buffer */
int fd = ERROR; /* image file descriptor */
int line; /* image line # */
int nlines; /* # image lines */

... C code ...

for (line = 0; line < nlines; ++line) {
char *bufp = buf;

... C code ...
}

}

Long integer constants in initializers should always include the trailing L. Global and
static variables that are not explicitly initialized will default to 0. If 0 is not a sensi-
ble value for such a variable, then it should be explicitly initialized.

If the declaration of an aggregate contains an initializer, then the initializer must
be fully specified; don’t omit trailing 0s. The only exception to this is a top-level global
variable definition in a file by itself, which is being initialized only to force storage allo-
cation (see Portability below).

Variable and function declarations are grouped according to the following criteria,
and appear in the following order. Each group of declarations is followed by at least
one blank line.

• extern variable declarations

• extern function declarations

• static variable definitions

• static function definitions

• global variable definitions

• global function definitions

Within a block, definitions are grouped and ordered as follows:

• static definitions

• local (including register) scalar definitions

• local aggregate definitions

typedef names are lower-case, ending in _t , for scalar types; or upper-case, end-
ing in _T, for aggregate types. typedef statements should always be top-level, and
are formatted like ordinary declarations.

- 278 -

Examples:

typedef int bool_t;

typedef struct node {
int datum;
struct node *prev;
struct node *next;

} LIST_T;

Macros which represent possible values of a structure member should be #define d
immediately following the structure’s typedef .

The auto keyword is always superfluous and should not be used.

A.1.7. Types
typedef s in IPW are used mainly as a portability tool. Where portable uses exist

for the standard C data types, those types are used directly: loop counters, file descrip-
tors, and function return codes are all int s; character strings are stored in arrays of,
or manipulated by pointers to, char s; etc. This is intended to help make IPW code
more readable to programmers with previous C experience. However, there are some
circumstances where typedef s contribute significantly to readability.

Boolean variables should always have the type bool_t , even though C by defini-
tion treats boolean expressions as having type int . Generic pointers that will be cast
to a specific type before dereferencing should have the type voidp_t , even though C
guarantees that such pointers may always be safely typed char * . These applications
of the base type are specialized enough to warrant defined types simply for readability’s
sake.

If standard C types are being used in an especially restricted context, then the
comment at the end of the corresponding declaration should mention the restriction.
One standard way of doing this is to indicate the subrange of permissible values
[Plum 1984].

Example:

float azimuth; /* radians: -pi..pi */

Default typing (allowing function values and formal arguments to default to int)
should NEVER be used; this is one of the most common sources of bugs in C code.52

The void type should always be used to cast the result of function whose value is
ignored; this forces the programmer to acknowledge that a return value is being deli-
berately discarded.

All structures should be typedef d, and thereafter only referred to using the
typedef type. IPW image headers are typical examples of this; see any $IPW/h/ xxxh.h
file. Note that in a typedef d structure the tag is superfluous and should be omitted,
unless the structure is self-referential, in which case the tag will be needed in one or
more member declarations.

52 lint will catch these, if you’re lucky ...

- 279 -

IPW programmers are encouraged to create their own types if doing so contributes
to the readability of the program. They should first familiarize themselves with the
default types provided in $IPW/h/typedef.h , and in any other specialized header files
they are using. In particular, structure types contribute to readability when they
replace multiple arrays with common indices.

A.1.8. Use of static
The static keyword is unfortunately overloaded in C, affecting both the visibility

and the extent of a declaration [Harbison 1987]. In IPW, there are three situations in
which the static storage class may be used.

Top-level definitions may be made static to keep them from being accessed out-
side the module in which they appear.

Local variables may be made static if they are aggregates that must be initialized,
or if their addresses are required to initialize other aggregates.53 This use of static is
common in IPW; e.g., with the OPTION_T type to collect program arguments, and with
the GETHDR_Ttype to control input image header processing.

Example:

{
static OPTION_T opt_b = {

’b’, "begin line,sample",
REAL_OPTARGS, "coord",
OPTIONAL, 2, 2

};

...

static OPTION_T operands = {
OPERAND, "input image file",
STR_OPERANDS, "image",
OPTIONAL, 1, 1,

};

static OPTION_T *optv[] = {
&opt_b,
...
&operands,
0

};
}

Finally, local variables may be made static to preserve their values between
calls to the function in which they are defined. This method is used chiefly for one-time
initialization of dynamic data structures:

53 ANSI C permits the initialization of automatic aggregates, but only with constants (e.g.,
static addresses).

- 280 -

Example:

f()
{

static bool_t already = FALSE;

if (!already) {
already = TRUE;

/*
* initialization code goes here ...
*/

}
}

Local static variables should never be used as ‘‘implicit’’ arguments (i.e., to affect the
behavior of the function as perceived by its caller.)

static definitions should not appear in nested blocks (i.e., anywhere within a
block except at the beginning of a function).

A.1.9. Expressions and statements
There should be no more than one statement per line of source text. The pre-

ferred place to break up expressions that won’t fit on a single line is before the lowest-
precedence operator in the expression.

The conditional operator ?: should be avoided, unless it results in substantially
more readable code than the equivalent if-else .

The comma operator should not be used to substitute for a block of statements.
The only recommended use of a comma operator is in the initialization or increment
clauses of a for loop.

Example:

/* reverse the order of chars in s */
for (i = 0, j = strlen(s) - 1 ; i < j; ++i, --j) {

char tmp;

tmp = s[i];
s[i] = s[j];
s[j] = tmp;

}

Side effects which rely on the evaluation order of && or || should be avoided.

- 281 -

Example:

/* bad */
if (i_filename != NULL

&& (i_fd = uropen(i_filename)) == ERROR) {
error("can’t open %s", i_filename);

}

/* good */
if (i_filename != NULL) {

i_fd = uropen(i_filename);
if (i_fd == ERROR) {

error("can’t open %s", i_filename);
}

}

In this example, the recommended form emphasizes that:

• i_fd is set only when i_filename is non-null.

• The error message is a direct consequence of the call to uropen , but only an
indirect consequence of whether i_filename is NULL.

Expressions with side effects should NEVER appear in a function argument list.

Always use explicit logical operations in a logical expression; don’t rely on a logical
expression being implicitly testing against 0. Test against the default macros TRUEor
FALSE if no other test is appropriate.

Logical expressions are usually clearer if they are reformulated to eliminate a
leading ! .

Example:

/* bad */
if (!(i < 0 || i >= n)) {

...
}

/* good */
if (i >= 0 && i < n) {

...
}

/* acceptable */
if (!isascii(c)) {

...
}

Embedded assignment expressions should be avoided, except where necessary for
loop control, in which case it is ESSENTIAL that the assignment expression be fully
parenthesized and explicitly tested.

- 282 -

Example:

/* BAD */ /* good */
while (c = nextc()) { while ((c = nextc()) != EOS) {

... ...
} }

Confusion about operator precedence in C is a rich source of bugs. In general,
expressions should be fully parenthesized if they contain:

• both || and &&

• multiple bitwise operators

• any mixture of logical, bitwise, and arithmetic operators

Use of white space should not suggest a misleading operator precedence.

Example:

a+b * c

A.1.10. Control structures
The most fundamental C control structure is the block. A nested block (i.e., other

than the outermost block of a function) should be neither too long to fit on a single
printed page,54 nor so deeply nested most of its statements are multi-line.

Excessive nesting can often be controlled by use of C’s ‘‘disguised GOTOs’’ — con-
tinue , break , and return . The clarity these provide by minimizing nesting should
always be weighed against their disruption of a simple top-to-bottom flow of control.
goto itself should hardly ever be used,55 and then only to branch forwards, and never
into a block at an equivalent or deeper nesting level.

Sequences of blocks at the same level (e.g., if-else) should be arranged so the
shortest blocks appear first, if their ordering is otherwise unimportant.

The switch is a special case of if-else , and should only be used if:

• the case s are mutually exclusive

• the order in which the case s are considered is unimportant

• a single integer expression, evaluated once, is being tested

• the code is significantly more readable than the equivalent if-else .

The case s in a switch should each be on a separate line. The default case
should always be last, and should always be present; if there is no sensible default,
then the default case should contain an appropriate call to bug . The code for each
case (including default) should end with either break , continue , return , the com-
ment /* FALL THROUGH */ , or a call to a function that never returns (e.g., exit ,
error , etc).

54 A reasonable limit is 56 lines, the pagination unit of the UNIX utility pr .
55 There are 5 goto s in 22,000 lines of IPW source code.

- 283 -

Loops should be designed so that there is minimal interaction between the control
statements and the loop body. Control variables should be modified in either a control
statement or the loop body, but NOT in both. Control variables should not be assumed
to contain any particular value after the loop terminates, unless computing this value is
the sole purpose of the loop.

Counters used to control loops should be able to handle the ‘‘off-by-one’’ value that
they will usually contain when the loop terminates.

do-while loops should usually be rewritten as while or for loops, unless:

• the control variable is explicitly set immediately before the loop is entered.

• you really do want the loop to always execute at least once.

Often there is a temptation to push all the work being done by a loop into its con-
trol statements, especially in a for loop. This should be avoided — the loop control
statements should be limited to controlling whether the loop is executed:

Example: sum of all elements of array

/* BAD */
for (i = 0, sum = 0; i < n; sum += array[i], ++i) {

continue;
}

/* GOOD */
sum = 0;
for (i = 0; i < n; ++i) {

sum += array[i];
}

If the desired outcome of a loop is still entirely a consequence of the execution of its
control statements, then the loop body should contain a single continue statement,
rather than a ; by itself:

Example: largest power of 2 less than n

/* BAD */ /* GOOD */
for (i = 1; i < n; i *= 2) { for (i = 1; i < n; i *= 2) {

; continue;
} }

The way in which a loop terminates should be obvious from its syntax. In almost
all cases, a straightforward while , for , or do-while will suffice. Occasionally loop
termination is controlled by a condition tested within the loop body; this unusual con-
struct should be clearly commented.

- 284 -

Example (based on [Dromey 1982]):

/*
* n
* accumulate x in product, for intege r n > 0
*/

product = 1.0;

for (; ;) {
/*

* extra multiplication if n is odd,
* before we divide away the low-order bit
*/

if (n & 01) {
product *= x;

}
/*

* reduce number of multiplications
* by exploiting (x**2)**(n/2) == x**n
*
* terminate before unnecessar y x = x**2,
* to avoid possible overflow
*/

if ((n /= 2) == 0) {
break;

}

x *= x;
}

A.1.11. Modules
The fundamental modular unit in C is the source file. Compiled source files are

the basic units which can be linked together to form executable programs.

IPW tries to maintain a one-to-one relationship between source files and global
identifiers (functions or variables). This eliminates the possibility that an executable
program will contain unused modules, since only identifiers that are explicitly refer-
enced will be loaded. Of course, source files may also contain an arbitrary number of
top-level static identifiers, since they are invisible during the linking process.

Source files are named after the most significant global identifier (variable or
function) they contain. This makes it easier for maintainers to find the source file asso-
ciated with a particular identifier.

There are some general rules for deciding how to modularize a particular pro-
gramming problem. First of all, the overall problem should be divided into levels of
abstraction. Functions at one level should ideally call only functions at the same or
next lower level. Global data structures should likewise be allotted to particular levels,
and not accessed by functions outside those levels.56 A good example of this model is

56 As program size becomes less of an issue, the benefits of a 1:1 mapping between globals and

- 285 -

the IPW scheme for image header I/O, in which the various layers (header-specific,
hdrio , and uio) each have associated global data structures, and each call only the
next lower layer:

layer functions data structure
BIH bihread, bihwrite BIH_T **_bih[]

hdrio hrname, hgetrec, hwprmb, hputrec HDRIO_T _hdriocb[]

uio ubof, ugets, uputs UIO_T _uiocb[]

Code should not be duplicated if there is any possibility of sharing it. If you find
yourself doing the same thing in two or more functions, it’s worth it to generalize that
action into a separate function: there will be fewer lines of code to keep track of, fewer
duplicated fixes to make if the code proves buggy, and a smaller overall program. The
function hstrdup is an example of this: it is essentially identical to strdup , except
that if the duplication fails, it constructs a more useful error message, thereby central-
izing error-handling code that would otherwise be duplicated throughout the header I/O
routines:

char *
hstrdup(s, name, band)

char *s; /* string to duplicate */
char *name; /* header name */
int band; /* header band # */

{
char *rtn; /* duplicate string */

REQUIRE(s != NULL);

rtn = strdup(s);

if (rtn == NULL) {
usrerr(band >= 0 ?

"’%s’ header: can’t dup ’%s’ (band %d)" :
"’%s’ header: can’t dup ’%s’",
name, s, band);

return (NULL);
}

return (rtn);
}

A general principle for deciding what actions should be encapsulated in a single
function is that a function should be fully explicable by a simple sentence; i.e., one verb
and one object. To the extent that a function deviates from this criterion, it should be
considered a candidate for:

• consolidation with another function

source files will have to be weighed against the benefits of shared access to top-level static , which
would eliminate the need for many of the global variables currently employed by IPW.

- 286 -

• splitting into two or more functions

• expansion into another level of abstraction

Functions should be kept small enough to be easily comprehended. A source file should
be small enough that you would not worry about losing track of the order of the pages
in a printed version.57 Deep nesting of blocks, or many blocks containing block-scoped
local variables, are also indications that a function may be too large.

Ideally, all communication between a function and the ‘‘outside world’’ should be
via either the formal arguments, or the function’s return value. However, it is also
desirable to minimize the number of arguments in a function. As a practical matter,
beyond about 5 arguments, it becomes much more difficult for the programmer to
remember the order of the arguments, and what each argument does. Functional
grouping of the arguments can mitigate this somewhat (e.g., input arguments come
first, then output arguments), as can other regularities in argument order (e.g., all IPW
I/O routines accept arguments in the order: file descriptor, buffer, count). Nonethe-
less, ‘‘if there are 12 arguments, then you forgot one of them.’’ [BLI 1984].

IPW allows functions to communicate via global data structures, in lieu of argu-
ments that would otherwise convey the following:

• information unused in the called function, but required by functions further down
the calling hierarchy

• environmental or contextual information that, once set, is used by several func-
tions but never modified.

The resulting simplification of function calling sequences has proven worthwhile; how-
ever, this use of globals requires some discipline on the part of the programmer, since
there is nothing in C to prevent any function from modifying a global to which it has
access. All functions that explicitly access or modify global variables MUST identify
those variables in their header comments.

The common C technique of placing related objects in a single structure can also
be used to help reduce the number of arguments passed to a function, since only a sin-
gle argument (the structure’s address) need be passed to gain access to all of the
objects.

The meaning of an argument should be invariant; i.e., ‘‘op-code’’ arguments which
alter the interpretation of other arguments should be avoided. The one permissible
exception to this is an argument which signals whether additional arguments follow, in
a function which accepts a variable number of arguments.

The type void should always be used for functions which return no value.

Functions should not require a special calling sequence to be initialized; instead,
they should rely on either compile-time initialization of local static, or run-time initial-
ization triggered by a local static flag.

A.1.12. Miscellany
If a function explicitly allocates storage, then it should either free the storage

before it returns, or pass a pointer to the storage back to the caller, in which case the
disposition of the storage becomes the caller’s responsibility.

57 There are currently well over 500 source files in IPW, about 10 of which are more than 4 pages
long.

- 287 -

Functions should always explicitly allocate any storage they require for their own
use — the practice of passing ‘‘work vectors’’ as arguments is strongly discouraged.

If a function is known to set the global variable errno , then errno should be
cleared before, and examined after, every call to the function, unless the function pro-
vides some other way to detect whether an error has occurred (e.g., by a unique return
value).

Source text lines should not contain more than 78 characters after tabs have been
expanded into spaces.

In situations where the ++ and -- operators would have the same effect in either
prefix or postfix form, use the prefix form.

Example:

/* wrong */ /* right */
for (i = 0; i < n; i++) { for (i = 0 ; i < n; ++i) {

The expression following return or sizeof should be enclosed in parentheses.

A.2. PORTABILITY
Portability refers to the set of constraints imposed on the coding process so that

the resulting code will run in a range of C environments (the combination of C com-
piler, C library, operating system, and underlying hardware), without significant
environment-specific changes. Therefore, a basic principle of portability (after
[Lapin 1987]) is: restrict the code to the subset of C defined by the intersection of the
capabilities of all desired C environments.

IPW defines this ‘‘portable environment’’ incrementally. The basic environment
for which IPW code is written is defined by the original C language specification [Ker-
nighan 1978] and by Version 7 of the UNIX operating system [BTL 1983]. Where exten-
sions to this environment have proved necessary, they have been drawn from the (draft)
ANSI C standard [Harbison 1987] and the IEEE POSIX operating system standard
[IEEE 1988]. Only extensions which can be easily simulated in the base environment
have been used. For example, several C library functions are used that are not defined
in the base environment, and portable source for these is provided with IPW for
environments that lack them.58 Thus, use of standard library functions is a significant
step towards portability.

The IPW programmer should use lint (specifically, ipwlint or ipwmake lint)
religiously; this will catch most nonportable constructs. Some versions of lint will
object to constructs that the programmer knows are safe; e.g., casting a pointer
returned by a memory allocation function. Such constructs should be preceded by the
one-line comment /* NOSTRICT */ , to indicate to future maintainers that the pro-
grammer understood the lint message generated by the subsequent line.59

Some circumstances require nonportable code, which should be isolated in
separate files and clearly marked as nonportable (e.g., in the NOTESsection of the
header comment). In many cases, a nonportable construct can be made portable by

58 Or, they are redefined in terms of some local equivalent; e.g., substituting index for strchr .
59 The original lint documentation indicated that /* NOSTRICT */ would disable type

checking of the subsequent source line, but this feature was apparently never implemented.

- 288 -

providing a few nonportable alternatives, one of which is selected at compile time by
conditional preprocessing.

A.2.1. Legal but nonportable
This section lists C language constructs which are well-defined but nonetheless

nonportable, principally because they are relatively recent additions to C and thus not
universally implemented, but also because they have proven likely to expose deficien-
cies in particular C environments.

Features added to the C language since its original definition should in general be
avoided; these include:

• hexadecimal character constants

• bit fields

• enum and signed types

• const and volatile type qualifiers

• #elif preprocessor directive

• #, ## , and defined preprocessor operators

• concatenation of string literals

Structures should be used neither as actual arguments in function calls nor as
function return values; use structure pointers instead. Structures should not be copied
by assignment; instead, use the library function memcpy to copy between structure
addresses.

One extension to the original C specification that IPW uses is the separation of
structure name spaces; i.e., the same member name may appear in different structures.
This is supported by all C environments we have encountered, and is essential for rea-
dability.

Although explicitly allowed in C, arrays with more than 2 dimensions are poorly
supported in some C environments. Therefore, IPW programs requiring higher-
dimensioned arrays should dynamically allocate them with the IPW function allocnd .
Such arrays may also be passed as arguments to functions, which cannot be done with
normal multidimensional arrays without the function’s knowing in advance all but the
leftmost dimension.

While main is technically an integer function, many C environments discard its
return value. IPW main s should always terminate by calling ipwexit .

Casting integer types will not always result in the unused high-order bits being
set to 0. To access the low-order bits of an integer, use explicit masking.

Example:

long i, j;
...
/* wrong */
i = (short) j;

/* right */
i = j & mask(sizeof(short) * CHAR_BIT);

- 289 -

String constants should not be broken across multiple lines with an embedded \ .

Do not assume any particular evaluation order for complex expressions, except
that specified for the following operators: , ?: && || .

A.2.2. Gray areas
The C language allows numerous constructs and expressions whose implementa-

tion and results are undefined. Needless to say, these ‘‘gray areas’’ of the language
definition should be avoided.

The notion of white space is extended in some environments to include form feeds,
vertical tabs, etc. In IPW programs, white space should be restricted to spaces, horizon-
tal tabs, and newlines.

Many C environments make strings literals read-only at execution time. To obtain
a writable string with a compile-time initial value, use the construct:

static char s[] = "initial value";

Negative integers are notorious for exposing weaknesses in C environments. Nei-
ther the bit-shift operators >> and <<, nor the division operator / , should be used
with negative integral operands. Negative quantities should not be converted between
integer and floating-point representations. In all cases, care should be taken to avoid
integer overflow, since its consequences are undefined.

Operations on characters should be avoided — the only safe ones are ==, != , and
the boolean functions defined in <ctype.h> . For printable characters, the graphic
representations should be used instead of octal (e.g., ’A’ instead of ’\101’), since
nondecimal constants may be unexpectedly sign-extended.

Floating-point initializers should be limited to individual constants. Some C com-
pilers cannot do floating-point arithmetic when folding constants; others use software-
emulated floating-point which may differ from the run-time environment.

Example:

/* BAD */ /* GOOD */
double magic_ratio = 1.0 / 3.0; double magic_ratio;

magic_ratio = 1.0 / 3.0;

Operators with side effects should not be applied to variables that appear on both
sides of an =.

Example:

/* BAD */ /* GOOD */
sumxy[i++] = x[i] + y[i]; sumxy[i] = x[i] + y[i];

++i;

Command-line argument processing in IPW programs should be handled by
ipwinit . IPW programs should not otherwise access the main arguments argc and
argv .

- 290 -

IPW programs should not directly call the C library memory allocation functions.
Generic requests for memory should be handled by ecalloc , requests for multidimen-
sional arrays should be handled by allocnd , and requests for specific IPW objects
should be handled by the allocation functions for those objects; e.g., xxxhmake.

NULL should always be cast to the correct pointer type if it appears in a function
argument list.

Many C environments maintain different formats for function and data addresses,
so IPW programs should never copy addresses between function and data pointers.

Since function formal arguments may actually be stored in a wider type than
declared, a function should never take the address of a formal argument.

The address of an aggregate object, other than an array, should alway be obtained
explicitly: don’t assume that &structure is equivalent to structure .

A.2.3. Common blunders
This section lists some constructs that are explicitly forbidden by all C definitions,

yet are used frequently enough to merit an explicit warning.

Comments should not be nested. The previously-described preprocessor mechan-
ism should be used to ‘‘comment out’’ a section of code.

The address of a local object should never be used in a context outside the extent
of the block where the object is defined. This includes returning the address as the
value of a function, or placing the address in a variable whose extent exceeds that of
the defining block.

Functions being invoked via a pointer should use explicit pointer notation; e.g.,
(*fp)() , not fp() .

The only legal pointer type conversion is to and from an voidp_t (or its
equivalent, char *). All such conversions must be explicitly cast, and no other pointer
type conversions are allowed. A pointer should not be dereferenced unless it is of the
same type as the object whose address it contains.

Arrays must have at least 1 element.

Don’t assume that the underlying character set is ASCII. In particular, printable
characters may not collate contiguously.

Don’t use multicharacter constants.

Don’t realloc -ate data structures containing pointers to dynamically-allocated
storage.

Don’t test floating-point variables for equality.

Don’t rely on parentheses to force a particular evaluation order. If the order is
numerically significant, then the expression must be broken up into separate state-
ments, and extra variables used to hold the intermediate results.

Remember that the unary minus is an operator. The expression -x may be unex-
pectedly widened if the quantity -x is representable in a narrower type than x (e.g.,
-32768).

Clear bits by &-ing with the complement of the bits to be cleared, to assure correct
treatment of high-order bits:

- 291 -

i &= ˜bits;

A.2.4. Preprocessor
Preprocessor control statements should be entirely contained on 1 line. There

should be no white space before or after the #. Preprocessor directives should not be
redefined with #define . There should be no comments on preprocessor control lines,
except for the end-of-line comment on each #define .

Function macro definitions should have no white space between the macro name
and the (. Function macros should be limited to 4 or fewer arguments. Formal argu-
ments should not appear inside string literals in the replacement text. Function mac-
ros will not be called recursively.

The file name in a #include directive should not be a pathname; the actual loca-
tion of header files is handled by ipwmake . The file name should be enclosed either in
<>s (UNIX header files) or "" (IPW header files). Header files should not end in an
unterminated comment or string literal.

#define -ing a previously defined macro may cause an error; when in doubt, pre-
cede a macro definition with an appropriate #undef . Macro definitions may or may
not be stacked; don’t assume that #undef will ‘‘pop’’ a previous definition.

IPW uses #if and #ifdef liberally to control the compilation of nonportable
code. When using #if , the conditional expression is constrained as follows:

• any macros must be defined, and must expand to integer constants (undefined
macros will not necessarily expand to 0)

• no environmental inquiries (e.g., sizeof)

• arithmetic is long int

• no casts

Large integer constants in #if expressions should be explicitly long (i.e., trailing L).
Character constants should be avoided. Mathematical errors in the evaluation of #if
expressions cause unpredictable results.

The files under $IPW/h/conf/ contain examples of environment-specific compila-
tion controls currently recognized by IPW.

A.2.5. Names
Global names must be unique in the first 6 characters. All other names, including

macros and labels, must be unique in the first 8 characters. Case may be used as
described previously, but names should be selected so that all names would be distinct
in a monocase environment.

Names should have neither leading nor trailing underscores.

File names (source code and header files) should be no more than 12 characters
total — UNIX guarantees 14-character file names, and RCS requires 2 for the ,v suffix.

A.2.6. Types
C provides several integer types, whose sizes vary according to the host environ-

ment. All that is guaranteed by C is that

- 292 -

sizeof(short) <= sizeof(int) && sizeof(int) <= sizeof(long)

for any particular implementation. While this implies that int , short , and long ,
and the corresponding unsigned types, could all be represented by the same number of
bits, in practice the following assumptions about the domains of the various integer
types have proven safe:

type min. value max. value
char 0 127
unsigned char 0 255
int -32767 32767
short -32767 32767
unsigned 0 65535
unsigned short 0 65535
long −(231−1) 231−1
unsigned long 0 232−1

To understand these assumptions, it should be remembered that int s may be as small
as 16 bits, char s may be signed, and negative integers may be expressed in signed-
magnitude as well as complement representations.

Several additional restrictions on the use of integer types are observed by IPW:

• int should be the default integer type (especially for function arguments and
return values, which are automatically widened to int from ‘‘narrower’’ types.) If
conserving memory is important, use short . If overflow is likely, use long .

• Do not use the char types as small integers, since their sign behavior is
implementation-dependent.

• The derived type bool_t should be used for any integer variable that will only
assume the values TRUEor FALSE.

• Unsigned types should not be used directly, since they may not be implemented in
a particular environment. Instead, use the IPW derived types and access macros
listed below. The access macros are used to extract the value of an unsigned
expression; they are no-ops in environments which correctly implement the
corresponding type.

type access macro
uchar_t UCHAR()

ushort_t USHORT()

ulong_t ULONG()

• long quantities should not be directly assigned to narrower quantities, since
undetectable truncation may result. Instead, use the following IPW functions,
each of which accepts a single long argument :

- 293 -

function returns
ltof double

ltoi int

ltou unsigned

These functions cause program termination with an appropriate error message if
the long argument could not be exactly represented in the return type. In situa-
tions of possible precision loss where such functions are not available, explicit
casts should be used.

Example:

int i;
char c;

c = (char) i;

All quantities whose representation could need to be changed if IPW were moved
to a new environment should be typedef d. Two conspicuous examples of this are
pixel_t and fpixel_t , the types used for integer and floating-point image pixels,
respectively. On some machines it may be expedient to make pixel_t equivalent to
unsigned char , trading precision for speed; a similar tradeoff may be made between
float and double for fpixel_t . Often, such representation decisions can be made at
compile time:

Example:

/*
* put file descriptors in most space-efficient type
*/

#if OPEN_MAX <= SHORT_MAX
typedef short fd_t;
#else
typedef int fd_t;
#endif

Standard C types should not be redefined; e.g., avoid gimmicks like

#define int long

The new ANSI types, such as long double and signed char , should be avoided,
at least until ANSI-conforming compilers become ubiquitous. Some essential ANSI con-
structs are already simulated by IPW; in particular, the generic pointer void *
appears in IPW as the type voidp_t .

Casts should always be used when copying from one type to another. Casts are
especially necessary in the following circumstances:

• before a constant used as a formal argument:

- 294 -

Example:

#include <math.h>
...
double sqrt;

sqrt_2 = sqrt((double) 2);

• before a function call whose return value is ignored:

Example:

(void) printf("%d %g0, i, variance[i]);

A.2.7. Machine-dependent constants
IPW programs often need to reference hardware-dependent constants; e.g., the

smallest or largest floating-point numbers, the machine epsilon, etc. Hard-coding such
values into the source code, or even #define -ing them on a per-module basis, would
seriously restrict portability.

The approach taken by IPW is to determine such machine-dependent constants
dynamically, and then to store these as a single set of macros that are automatically
included by ipw.h . The list of constants is generated by the IPW program machine ,
which uses algorithms from [Cody 1988] plus a few of our own. When IPW is installed
on a new host machine, the installation procedure requires that the machine program
be compiled and run before compiling any other code.

This automatic approach seems superior to that of [Fox 1978], in which all known
variants of the machine-dependent parameters are hard-coded in specific subroutines,
and the implementor must enable the appropriate values for the host system, or deter-
mine them independently if they are not already provided.

The output of machine is a direct replacement for either of the ANSI C header
files <float.h> or <limits.h> (depending on the options specified when machine is
run). The IPW implementor may arrange for the machine -generated versions of these
files to be included by ipw.h in environments that do not otherwise provide them.

A.2.8. Environment
This sections documents miscellaneous restrictions imposed by various C environ-

ments.

Overly complex declarations should be avoided. A declaration should not contain
more than 6 modifiers (e.g., * , [] , etc.).

Local variables are typically allocated on a stack, whose size may be severely lim-
ited in some environments. No more than about 4 KBytes of local storage should be
allocated per block, and no local object should be larger than 1 KByte. This restriction
does not apply to dynamically allocated space.

Any coding technique which relies on 2’s-complement arithmetic, or on the pres-
ence or absence of integer sign extension, should be avoided. This includes using >>
for division by powers of 2, and using char s as small signed integers.

- 295 -

The type of sizeof varies across environments. It should not be assumed to be
unsigned , nor should it be used as a case constant in a switch statement.

Byte ordering within integers obviously varies between different hardware.
union s or char pointers should therefore not be used to extract bytes from integers —
use shifting and masking instead.

C environments use a variety of mechanisms for isolating the defining instance of
a global variable from multiple global declarations. IPW code should be written so that
all global variables are defined exactly once, and initialized where defined; all other
references should contain the keyword extern . This has led to the idiom of defining
each global variable in its own source file.

Aggregate objects may contain unused bits (‘‘holes’’) due to the alignment require-
ments of their components. Binary comparisons (e.g., memcmp) of aggregates should
therefore be avoided, since the value of the unused bits is undefined.

Environment variables should always be accessed via the getenv library function,
not via a third envp argument to main .

A.3. PERFORMANCE
The performance of a piece of code (usually taken to mean how fast it executes,

but also often meaning how sparingly it uses machine resources) is of secondary con-
cern to its maintainability, portability, and style:

‘‘It’s easier to get a working system efficient than it is to get an efficient system work-
ing’’. [Minow 1984]

General advice on performance tuning is beyond the scope of this section; [Bent-
ley 1982] contains an excellent summary of the standard methodology. However, there
are some particular techniques that IPW exploits that will be mentioned in the follow-
ing subsections.

Most UNIX environments provide execution profiling at either the function or the
source statement level. These statistics are essential to focus the performance tuning
effort on the portions of code that are most resource-consumptive. The adage that ‘‘ten
percent of the code accounts for ninety percent of the running time’’ has certainly pro-
ven true for IPW. The -P option of ipwmake can be used to build an IPW program with
profiling code included, and to link the program to profiled versions of the IPW
libraries.

As the tuning-profiling process iterates, it is essential to keep notes on the relative
improvements yielded by various techniques [Collyer 1987]; in IPW, these notes should
be kept in the READMEfile in the same directory as the source code being tuned. These
notes serve the dual purpose of preventing future maintainers of the code from trying
‘‘obvious’’ tuning techniques that have already proven ineffective, and of establishing
patterns of effective tuning techniques that may be added to the performance stan-
dards.

A.3.1. Memory
Efficient use of memory resources means minimizing both the total consumption of

memory, and the accessing of ‘‘expensive’’ memory objects.

IPW attempts to minimize the memory consumed by program instructions, by lim-
iting the number of functions per object module (usually 1:1). This avoids the loading
of code that is never executed.

- 296 -

Image processing is by nature a memory-intensive activity. IPW programs should
attempt to minimize this by maintaining only the minimum required image context for
the particular operation being performed. For example, point operations require only a
single pixel of context, while neighborhood operations no more than the neighborhood of
the current pixel.

The hierarchy of functions called by an IPW program should be as shallow as pos-
sible. This minimizes the amount of stack space occupied by functions that are waiting
for a called function to return. In other words, it’s better to design a program as a
sequence of function calls at the same level, rather than a few top-level calls that each
proceed several levels down.

Temporary storage space should be local to the function. Ideally, such space
should be auto objects declared within the function. These object are the least expen-
sive to allocate and free; however, such arrays must be sized at compile time and are
restricted by stack size limits in some environments. If dynamically-allocated space is
therefore necessary, it must be explicitly free d before the function returns.

The IPW programmer should be aware that the expense (run-time overhead) of
accessing objects varies considerably according to their type, storage class, and align-
ment. Especially expensive is converting data between types that have radically dif-
ferent internal representations; e.g., between integer and floating-point. Such conver-
sions should be avoided, possibly by redesigning the algorithm to operate entirely in
either the integer or the floating-point domain.

Another ‘‘hidden’’ type conversion occurs when types are ‘‘widened’’ in function call
and return sequences. Generally, any integer actual argument or return value is con-
verted to int , and any floating-point actual argument or return value is converted to
double , so the use of other types for formal arguments or return values may cause
unnecessary conversions.60

In most environments, int and double operations are the fastest integer and
floating-point operations. However, many C compilers allow the option of disabling the
automatic float to double conversion in expressions where all floating-point
operands have type float . If this option is in effect, then float operations can be
significantly faster than double operations. For this reason, IPW uses the defined type
fpixel_t for the floating-point representation of image pixels. This type is float by
default, but may be set to double in environments where automatic widening cannot
be disabled.

Frequently-accessed members of a structure should be located near the beginning
of the structure, since many hardware architectures support fast variations of indexed
access when the offset is small (of course, the first member may always be accessed
without any offset being computed.)

Finally, on some architectures, some benefit may be realized by declaring local
scalar variables before local arrays, owing to vagaries in indexed access to stack-based
objects [BLI 1984].61

60 These conversions can be avoided in an ANSI C environment if an appropriate prototype is in

scope when the function is called.
61 This has not been observed in any current IPW environment.

- 297 -

A.3.2. Registers
Use of the register storage class for frequently-accessed variables is probably

the single most obvious performance enhancement available to the C programmer, but
registers should not be considered a panacea. The tendency to ‘‘put everything in a
register’’ can actually be counterproductive: register declarations do not always
result in faster code; they may be ignored altogether by a good optimizing compiler; and
they may mislead a subsequent maintainer of the code into assuming that a great deal
of thought went into their assignment. register declarations should therefore only
be used in cases where they are known to be beneficial. In practice, this means that
register declarations should be applied only after the code is complete enough that it
can be subject to function- or (preferably) statement-level execution profiling.

register declarations, assuming the compiler pays attention to them, are
demonstrably most effective when applied to pointers (especially pointers to structures)
or to integers used as array indices. They are less effective for integers used only in
arithmetic calculations.

The number of registers per function available for general use can vary from 2
(PCs) to essentially unlimited (some RISC architectures). On some machines (e.g.
VAX), all data types are taken from the same register pool; other machines (e.g.
MC680x0) distinguish between data and address registers. Machines with floating
point hardware may provide separately assignable floating-point registers. Excess
register declarations will in all cases be ignored, but the order in which the available
registers will be assigned is undefined.

To allow the programmer some control over how registers are assigned, IPW
source code contains no unadorned register declarations. Instead, the pseudo
storage classes REG_n (for integer and pointer registers) and FREG_n (for floating-point
registers) are provided, where n is a number between 1 and (currently) 6.62 The
declarations should be assigned in decreasing order of importance. When IPW is
installed, declarations corresponding to the available number of registers are set to
register , and the remaining declarations are elided.

Example:

char *
memcpy(dest, src, nbytes)

REG_1 char *dest; /* -> destination array */
REG_2 char *src; /* -> source array */
REG_3 int nbytes; /* # bytes to copy */

{
while (--nbytes >= 0) {

*dest++ = *src++;
}

}

It should be noted that there are certain situations where a register declaration
adds a fixed amount of execution overhead. Architectures that save and restore regis-
ters as part of the function calling sequence will add overhead to the function call for

62 We assume that environments providing more than 6 assignable registers probably also have
compilers smart enough to optimally allocate registers without programmer assistance.

- 298 -

each additional register allocated. Using register declarations on formal arguments
may also cause an explicit copying of the formal argument into a register, even if it is
subsequently unused.

A.3.3. Control structures
The overall flow of control in a function is of course dictated by the particular

algorithm it implements. Within this constraint, there are a few simple techniques
employed in IPW, involving the selection of the most generally efficient of otherwise
equivalent structures.

Loops are the most obvious target for control structure optimization. ‘‘Endless’’
loops (i.e. exited only via break or exit()) should be written as for (;;) — on some
IPW hosts the equivalent while (TRUE) has been observed to compile into an explicit
test of the constant condition.63 Loops within which the value of the control variable is
not consulted should be written in the ‘‘count down to 0’’ form.

Example:

/* fast */ /* slow */
for (i = n; --i >= 0;) { for (i = 0; i < n; ++i) {

... ...
} }

/* usually fastest, if testing against 0 */
i = n;
do {

...
} while (--i > 0);

The do-while form, with the initialization of the loop counter immediately preceding
the loop, is an IPW idiom.

The efficiency of a switch statement is notoriously unpredictable: on some archi-
tectures, it compiles into an efficient jump table, while on others it is functionally
equivalent to an if-else sequence. Moreover, a switch statement allows no control
over the order in which the various case s are evaluated, whereas an explicit if-else
sequence can be arranged to test the most frequent cases first. In IPW if-else is
therefore preferred to the switch , unless the switch results in significantly more
readable code.

A similar caveat applies to the conditional operator ?: . It often results in signifi-
cantly worse code than the equivalent if-else , and is also usually less readable.

If repeated calls to a particular function are accumulating a significant fraction of
the program’s runtime, then it may be worthwhile to construct a macro ‘‘wrapper’’ for
the function, which tests for common situations in which the function call can be
avoided. For example, if strings are being compared, and it is likely that a significant
number of them will differ in the first character, then calls to the string-compare func-
tion can be avoided by explicitly testing the first characters of the strings [Col-
lyer 1987]:

63 Most compilers ARE smarter than this ...

- 299 -

#define STREQ(s1,s2) (*(s1) == *(s2) && strcmp((s1)+1,(s2)+1) == 0)

- 300 -

References

Adams 1979.
Adams, J. and E. Driscoll, ‘‘A low-cost transportable image processing system,’’ in
First ASSP Workshop on Two-Dimensional Signal Processing, Berkeley, CA,
October 3-4, 1979.

Adobe 1985.
Adobe Systems Inc., PostScript Language Reference Manual, Addison-Wesley,
Reading, MA, 1985.

Aho 1988.
Aho, A., B. Kernighan, and P. Weinberger, The AWK Programming Language,
Addison-Wesley, Reading, MA, 1988.

Allman 1989a.
Allman, E., ‘‘Breaking the code,’’ UNIX Review, vol. 7, no. 11, pp. 79-86, 1989.

ANSI 1989.
X3J11 Technical Committee on the C Programming Language, ‘‘American National
Standard for Information Systems - Programming Language C,’’ X3.159-1989, X3
Secretariat, Computer and Business Equipment Manufacturers Association, New
York, 1989.

Bentley 1982.
Bentley, J., Writing Efficient Programs, Prentice-Hall Inc., Englewood Cliffs, NJ,
1982.

BLI 1984.
Britton Lee Inc., ‘‘Host software coding standards, revision 2.10,’’ 205-1187-003,
Britton Lee Inc., 12 November 1984.

Bracken 1983.
Bracken, P., ‘‘Remote sensing software systems,’’ in Manual of Remote Sensing,
Second Edition, ed. R. Colwell, vol. 1, pp. 807-839, American Society of Photo-
grammetry, Falls Church, VA, 1983.

BTL 1983.
Bell Telephone Laboratories, Inc., UNIX Time-Sharing System : UNIX
Programmer’s Manual, Volume 1, Holt, Rinehart and Winston, New York, 1983.

Castleman 1979.
Castleman, K., Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ,
1979.

Chase 1986.
Chase, R., ‘‘Data and Information System Data Panel Report,’’ Technical
Memorandum 87777, NASA, 1986.

Chen 1987.
Chen, T., D. Staelin, and R. Arps, ‘‘Information content analysis of Landsat image
data for compression,’’ IEEE Transactions on Geoscience and Remote Sensing, vol.
GE-25, no. 4, pp. 499-501, 1987.

Cody 1988.
Cody, W., ‘‘Algorithm 665, Machar: A subroutine to dynamically determine
machine parameters,’’ ACM Transactions on Mathematical Software, vol. 14, pp.
303-309, 1988.

- 301 -

Collyer 1987.
Collyer, G. and H. Spencer, ‘‘News need not be slow,’’ in Winter 1987 USENIX
Technical Conference Proceedings, pp. 181-190, USENIX Association, Washington,
DC, 1987.

Dozier 1984.
Dozier, J., ‘‘Snow reflectance from Landsat-4 Thematic Mapper,’’ IEEE Transac-
tions on Geoscience and Remote Sensing, vol. GE-22, no. 3, pp. 323-328, 1984.

Dozier 1989.
Dozier, J. and J. Frew, ‘‘Rapid calculation of terrain parameters for radiation
modeling from digital elevation data,’’ Proceedings IGARSS ’89, 1989.

Dromey 1982.
Dromey, R., How to Solve it by Computer, Prentice-Hall Inc., Englewood Cliffs,
NJ, 1982.

Dubayah 1990.
Dubayah, R., J. Dozier, and F. Davis, ‘‘Topographic distribution of clear-sky radia-
tion over the Konza Prairie, Kansas, USA,’’ Water Resources Research, 1990 (in
press).

Duda 1973.
Duda, R. and P. Hart, Pattern Classification and Scene Analysis, Wiley, New
York, 1973.

Elder 1989.
Elder, K., J. Dozier, and J. Michaelsen, ‘‘Spatial and temporal variation of net
snow accumulation in a small alpine watershed, Emerald Lake basin, Sierra
Nevada, California, USA,’’ Annals of Glaciology, vol. 13, pp. 56-63, 1989.

EOSAT 1985.
EOSAT, User’s Guide for Thematic Mapper Computer-Compatible Tapes, Earth
Observation Satellite Company, 1985.

Esaias 1986.
Esaias, W., Moderate-Resolution Imaging Spectrometer Instrument Panel Report,
Earth Observing System Reports, IIb, NASA, 1986.

Feldman 1979.
Feldman, S., ‘‘Make : a program for maintaining computer programs,’’ Software--
Practice and Experience, vol. 9, pp. 255-265, 1979.

Fenlason 1990.
Fenlason, J., ‘‘tar : The GNU Tape Archive,’’ online documentation, 28 January
1990.

Fox 1978.
Fox, P., A. Hall, and N. Schryer, ‘‘Framework for a portable library,’’ ACM Tran-
sactions on Mathematical Software, vol. 4, pp. 177-188, 1978.

Frew 1984.
Frew, J. and J. Dozier, ‘‘The QDIPS image processing system,’’ (CSL Technical
Report), Computer Systems Lab, University of California, Santa Barbara, 1984.

Goetz 1986.
Goetz, A., High-Resolution Imaging Spectrometer Instrument Panel Report, Earth
Observing System Reports, IIc, NASA, 1986.

- 302 -

Green 1976.
Green, P., Mathematical Tools for Applied Multivariate Analysis, Academic Press,
New York, 1976.

Harbison 1987.
Harbison, S. and G. Steele Jr., C: A Reference Manual (Second Edition),
Prentice-Hall Inc., Englewood Cliffs, NJ, 1987.

Hemenway 1984.
Hemenway, K. and H. Armitage, ‘‘Proposed syntax standard for UNIX system com-
mands,’’ UNIX/world, vol. 1, no. 3, pp. 54-57, 1984.

Hunt 1982.
Stevens, W. and B. Hunt, ‘‘Software pipelines in image processing,’’ Computer
Graphics and Image Processing, vol. 20, pp. 90-95, 1982.

IEEE 1988.
Technical Committee on Operating Systems, IEEE Computer Society, ‘‘IEEE Stan-
dard Portable Operating System Interface for Computer Environments,’’ Std
1003.1-1988, The Institute of Electrical and Electronic Engineers, Inc., New York,
1988.

Johnson 1978.
Johnson, S., ‘‘Lint, a C program checker,’’ in UNIX Time-Sharing System : UNIX
Programmer’s Manual, Volume 2, pp. 278-290, Holt, Rinehart and Winston, New
York, 1983.

Kernighan 1976.
Kernighan, B. and P. Plauger, Software Tools, Addison-Wesley, Reading, MA,
1976.

Kernighan 1978.
Kernighan, B. and D. Ritchie, The C Programming Language, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1978.

Landy 1984.
Landy, M., Y. Cohen, and G. Sperling, ‘‘HIPS : a Unix-based image processing sys-
tem,’’ Computer Vision, Graphics, and Image Processing, vol. 25, pp. 331-347,
1984.

Lapin 1987.
Lapin, J., Portable C and UNIX System Programming, Prentice-Hall Inc., Engle-
wood Cliffs, NJ, 1987.

LaVoie 1987.
LaVoie, S., C. Avis, H. Mortensen, C. Stanley, and L. Wainio, ‘‘VICAR User’s
Guide, Version 1,’’ D-4186, Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA, 1987.

Li 1987.
Li, S., Z. Wan, and J. Dozier, ‘‘A component decomposition model for evaluating
atmospheric effects in remote sensing,’’ Journal of Electromagnetic Waves and
Applications, vol. 1, no. 4, pp. 323-347, 1987.

Martin 1988.
Martin, T., M. Martin, R. Davis, R. Mehlman, M. Braun, and M. Johnson, ‘‘Plane-
tary Data System Standards for the Preparation and Interchange of Data Sets,
Version 1.1,’’ JPL D-4683, Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA, 03 October 1988.

- 303 -

Meyer 1988.
Meyer, B., Object-Oriented Software Construction, Prentice-Hall, New York, 1988.

Minow 1984.
Minow, M., ‘‘A C style sheet,’’ Toolkit - The UNISIG Newsletter, vol. 3, no. 1, pp.
3-34, DECUS, April 1984.

Musciano 1988.
Musciano, C., ‘‘Tooltool User’s Guide, Version 2.1,’’ online documentation,
Advanced Technology Dept., Harris Corp., Melbourne, FL, 1988.

Paddon 1988.
Paddon, J., ‘‘Image Processing Software for Education in Remote Sensing,’’ M.A.
thesis, Dept. of Geography, University of California, Santa Barbara, CA, Sep-
tember 1988.

Paeth 1986a.
Paeth, A., ‘‘The IM Raster Toolkit : design, implementation, and use,’’ Tech. Rept.
CS-86-65, University of Waterloo Computer Science Department, December 1986.

Paeth 1986b.
Paeth, A., ‘‘A fast algorithm for general raster rotation,’’ in Proceedings, Graphics
Interface ’86, pp. 77-81, Vancouver, BC, 1986.

Perkins 1988.
Perkins, D., D. Howell, and M. Szczur, ‘‘The Transportable Applications Environ-
ment - an interactive design-to-production development system,’’ in Digital Image
Processing in Remote Sensing, ed. J. Muller, pp. 39-64, Taylor and Francis, Lon-
don, 1988.

Plum 1984.
Plum, T., C Programming Guidelines, Prentice-Hall Inc., Englewood Cliffs, NJ,
1984.

Porter 1987.
Porter, W. and H. Enmark, ‘‘A system overview of the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS),’’ Proc. SPIE (Imaging Spectroscopy II), vol. 834,
pp. 22-31, 1987.

Pratt 1978.
Pratt, W., Digital Image Processing, Wiley, New York, 1978.

Press 1988.
Press, W., B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C,
Cambridge University Press, Cambridge, 1988.

Rasure 1987.
Rasure, J., D. Argiro, E. Engquist, S. Hallette, R. Neher, S. Wilson, and M. Young,
‘‘Interactive image processing using X windows,’’ ESD, pp. 32-33, December 1987.

Rew 1989.
Rew, R., netCDF User’s Guide, Version 1.0, Unidata Program Center, University
Corporation for Atmospheric Research, Boulder, CO, April 1989.

Rice 1983.
Rice, R. and J. Lee, ‘‘Some practical universal noiseless coding techniques, part
II,’’ JPL Publication 83-17, Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA, 1983.

- 304 -

Richards 1986.
Richards, J., Remote Sensing Digital Image Analysis, Springer-Verlag, New York,
1986.

Ritchie 1974.
Ritchie, D. and K. Thompson, ‘‘The UNIX time-sharing system,’’ CACM, vol. 17, pp.
365-375, 7, July 1974.

Scheifler 1986.
Scheifler, R. and J. Gettys, ‘‘The X Window System,’’ ACM Transactions on Graph-
ics, vol. 5, no. 2, pp. 79-109, April 1986.

Sellers 1965.
Sellers, W., Physical Climatology, University of Chicago Press, Chicago, 1965.

Simonett 1978.
Simonett, D., T. Smith, W. Tobler, D. Marks, J. Frew, and J. Dozier, ‘‘Geobase
Information System Impacts on Space Image Formats,’’ SBRSU Technical Report
3, Remote Sensing Unit, Department of Geography, University of California,
Santa Barbara, CA, April 1978.

Simonett 1983.
Simonett, D., ‘‘The development and principles of remote sensing,’’ in Manual of
Remote Sensing, Second Edition, ed. R. Colwell, vol. 1, pp. 1-35, American Society
of Photogrammetry, Falls Church, VA, 1983.

SPOT 1989.
SPOT Image Corporation, SPOT User’s Handbook, SPOT Image Corporation, Res-
ton, VA, 1989.

Stonebraker 1986.
Stonebraker, M., ‘‘Retrospection on a database system,’’ in The INGRES Papers :
Anatomy of a Relational Database System, ed. M. Stonebraker, pp. 46-62,
Addison-Wesley, Reading, MA, 1986.

Stroustrup 1986.
Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, MA,
1986.

Sun 1987.
Sun Microsystems, Inc., ‘‘External Data Representation Standard: Protocol Specif-
ication,’’ RFC 1014, Internet Activities Board, June 1987.

Sun 1988.
Sun Microsystems Inc., ‘‘Pixrect Reference Manual,’’ part number 800-1785-10 rev
A, Sun Microsystems Inc., Mountain View, CA, May 1988.

Thompson 1978.
Thompson, K., ‘‘UNIX Time-Sharing System: UNIX implementation,’’ Bell Sys.
Tech. J., vol. 57, no. 6, pp. 1931-1946, 1978.

Vane 1988.
Vane, G. and A. Goetz, ‘‘Terrestrial imaging spectroscopy,’’ Remote Sensing of
Environment, vol. 24, no. 1, pp. 1-29, February 1988.

Welch 1984.
Welch, T., ‘‘A technique for high-performance data compression,’’ IEEE Computer,
vol. 17, no. 6, pp. 8-19, 1984.

- 305 -

Wharton 1987.
Wharton, S. and Y. Lu, ‘‘The Land Analysis System (LAS): a general-purpose sys-
tem for multispectral image processing,’’ in Proceedings of IGARSS ’87 Sympo-
sium, pp. 1081-1086, Ann Arbor, MI, 18-21 May 1987.

